Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34985947
PubMed Central
PMC8730630
DOI
10.1126/sciadv.abk0953
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the “special pair” that was weakly visible in previous 2DES experiments.
Biosciences Division Argonne National Laboratory Argonne IL 60439 USA
Department of Chemistry University of California Riverside CA 92521 USA
Department of Chemistry Washington University St Louis MO 63130 USA
Department of Physics University of Michigan 450 Church St Ann Arbor MI 48109 USA
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 CZ 12116 Prague 2 Czech Republic
Zobrazit více v PubMed
R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science Ltd, 2008).
W. W. Parson, A. Warshel, Mechanism of charge separation in purple bacterial reaction centers, in The Purple Phototrophic Bacteria, vol. 28 of Advances in Photosynthesis and Respiration, C. N. Hunter, F. Daldal, M. C. Thurnauer, J. T. Beatty, Eds. (Springer, 2009), pp. 355–377.
Wraight C. A., Clayton R. K., The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. Acta Bioenerg. 333, 246–260 (1974). PubMed
Kirmaier C., Holten D., Parson W. W., Picosecond-photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim. Biophys. Acta Bioenerg. 810, 49–61 (1985).
Yoder L. M., Cole A. G., Sension R. J., Structure and function in the isolated reaction center complex of photosystem II: Energy and charge transfer dynamics and mechanism. Photosynth. Res. 72, 147–158 (2002). PubMed
Brixner T., Stenger J., Vaswani H. M., Cho M., Blankenship R. E., Fleming G. R., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed
Turner D. B., Dinshaw R., Lee K.-K., Belsley M. S., Wilk K. E., Curmi P. M. G., Scholes G. D., Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14, 4857–4874 (2012). PubMed
Scholes G. D., Fleming G. R., Olaya-Castro A., Van Grondelle R., Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011). PubMed
Lewis K. L. M., Ogilvie J. P., Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 3, 503–510 (2012). PubMed
Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed
Panitchayangkoon G., Hayes D., Fransted K. A., Caram J. R., Harel E., Wen J., Blankenship R. E., Engel G. S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. U.S.A. 107, 12766–12770 (2010). PubMed PMC
Vos M. H., Lambry J. C., Robles S. J., Youvan D. C., Breton J., Martin J. L., Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88, 8885–8889 (1991). PubMed PMC
Vos M. H., Martin J. L., Femtosecond processes in proteins. Biochim. Biophys. Acta 1411, 1–20 (1999). PubMed
Romero E., Novoderezhkin V. I., Van Grondelle R., Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017). PubMed
Lee H., Cheng Y.-C., Fleming G. R., Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed
Ishizaki A., Fleming G. R., On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009). PubMed
Ishizaki A., Fleming G. R., Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009). PubMed
Chin A. W., Rivas Á., Huelga S. F., Plenio M. B., Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).
Huo P., Coker D. F., Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. J. Chem. Phys. 133, 184108 (2010). PubMed
Womick J. M., Moran A. M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed
Tiwari V., Peters W. K., Jonas D. M., Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–1208 (2013). PubMed PMC
Kolli A., O’Reilly E. J., Scholes G. D., Olaya-Castro A., The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137, 174109 (2012). PubMed
Huelga S. F., Plenio M. B., Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013).
Renaud N., Powell D., Zarea M., Movaghar B., Wasielewski M. R., Ratner M. A., Quantum interferences and electron transfer in photosystem I. J. Phys. Chem. A 117, 5899–5908 (2013). PubMed
Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed
Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., Van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC
Fujihashi Y., Higashi M., Ishizaki A., Intramolecular vibrations complement the robustness of primary charge separation in a dimer model of the photosystem II reaction center. J. Phys. Chem. Lett. 9, 4921–4929 (2018). PubMed
Christensson N., Kauffmann H. F., Pullerits T., Mančal T., Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC
Cao J., Cogdell R. J., Coker D. F., Duan H.-G., Hauer J., Kleinekathöfer U., Jansen T. L. C., Mančal T., Miller R. J. D., Ogilvie J. P., Prokhorenko V. I., Renger T., Tan H.-S., Tempelaar R., Thorwart M., Thyrhaug E., Westenhoff S., Zigmantas D., Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020). PubMed PMC
Westenhoff S., Palec̆ek D., Edlund P., Smith P., Zigmantas D., Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012). PubMed
Paleček D., Edlund P., Westenhoff S., Zigmantas D., Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci. Adv. 3, e1603141 (2017). PubMed PMC
Flanagan M. L., Long P. D., Dahlberg P. D., Rolczynski B. S., Massey S. C., Engel G. S., Mutations to R. sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates. J. Phys. Chem. A 120, 1479–1487 (2016). PubMed PMC
Ryu I. S., Dong H., Fleming G. R., Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center. J. Phys. Chem. B 118, 1381–1388 (2014). PubMed
Chenu A., Christensson N., Kauffmann H. F., Mančal T., Enhancement of Vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci. Rep. 3, 2029 (2013). PubMed PMC
Butkus V., Zigmantas D., Abramavicius D., Valkunas L., Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013).
Butkus V., Valkunas L., Abramavicius D., Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140, 034306 (2014). PubMed
Halpin A., Johnson P. J. M., Tempelaar R., Murphy R. S., Knoester J., Jansen T. L. C., Miller R. J. D., Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014). PubMed
Farrow D. A., Qian W., Smith E. R., Ferro A. A., Jonas D. M., Polarized pump-probe measurements of electronic motion via a conical intersection. J. Chem. Phys. 128, 144510 (2008). PubMed
Brazard J., Bizimana L. A., Gellen T., Carbery W. P., Turner D. B., Experimental detection of branching at a conical intersection in a highly fluorescent molecule. J. Phys. Chem. Lett. 7, 14–19 (2016). PubMed
Musser A. J., Liebel M., Schnedermann C., Wende T., Kehoe T. B., Rao A., Kukura P., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).
Thyrhaug E., Bogh S. A., Carro-Temboury M. R., Madsen C. S., Vosch T., Zigmantas D., Ultrafast coherence transfer in DNA-templated silver nanoclusters. Nat. Commun. 8, 15577 (2017). PubMed PMC
Gaynor J. D., Sandwisch J., Khalil M., Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nat. Commun. 10, 5621 (2019). PubMed PMC
Eckert P. A., Kubarych K. J., Vibrational coherence transfer illuminates dark modes in models of the FeFe hydrogenase active site. J. Chem. Phys. 151, 054307 (2019).
Policht V. R., Niedringhaus A., Ogilvie J. P., Characterization of vibrational coherence in monomeric bacteriochlorophyll a by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 9, 6631–6637 (2018). PubMed
Niedringhaus A., Policht V. R., Sechrist R., Konar A., Laible P. D., Bocian D. F., Holten D., Kirmaier C., Ogilvie J. P., Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 115, 3563–3568 (2018). PubMed PMC
Jonas D. M., Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). PubMed
Faries K. M., Dylla N. P., Hanson D. K., Holten D., Laible P. D., Kirmaier C., Manipulating the energetics and rates of electron transfer in Rhodobacter capsulatus reaction centers with asymmetric pigment content. J. Phys. Chem. B 121, 6989–7004 (2017). PubMed
Stowell M. H. B., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G., Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997). PubMed
Jordanides X. J., Scholes G. D., Fleming G. R., The mechanism of energy transfer in the bacterial photosynthetic reaction center. J. Phys. Chem. B 105, 1652–1669 (2001).
Rancova O., Jankowiak R., Kell A., Jassas M., Abramavicius D., Band structure of the Rhodobacter sphaeroides photosynthetic reaction center from low-temperature absorption and hole-burned spectra. J. Phys. Chem. B 120, 5601–5616 (2016). PubMed
J. Breton, A. Vermeglio, The Photosynthetic Bacterial Reaction Center (Springer US, 1988), vol. 149.
Czarnecki K., Diers J. R., Chynwat V., Erickson J. P., Frank H. A., Bocian D. F., Characterization of the strongly coupled, low-frequency vibrational modes of the special pair of photosynthetic reaction centers via isotopic labeling of the cofactors. J. Am. Chem. Soc. 119, 415–426 (1997).
Diers J. R., Bocian D. F., Qy-excitation resonance Raman spectra of bacteriochlorophyll observed under fluorescence-free conditions. Implications for cofactor structure in photosynthetic proteins. J. Am. Chem. Soc. 117, 6629–6630 (1995).
Lutz M., Kleo J., Reiss-Husson F., Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas spheroides. Biochem. Biophys. Res. Commun. 69, 711–717 (1976). PubMed
Palaniappan V., Schenck C. C., Bocian D. F., Low-frequency near-infrared-excitation resonance Raman spectra of (M)H202L mutant reaction centers from rhodobacter sphaeroides. implications for the structural, vibronic, and electronic properties of the bacteriochlorin cofactors. J. Phys. Chem. 99, 17049–17058 (1995).
Egorova D., Detection of electronic and vibrational coherences in molecular systems by 2D electronic photon echo spectroscopy. Chem. Phys. 347, 166–176 (2008).
Meech S. R., Hoff A. J., Wiersma D. A., Role of charge-transfer states in bacterial photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 83, 9464–9468 (1986). PubMed PMC
Hartwich G., Scheer H., Aust V., Angerhofer A., Absorption and ADMR studies on bacterial photosynthetic reaction centres with modified pigments. Biochim. Biophys. Acta 1230, 97–113 (1995).
Arnett D. C., Moser C. C., Dutton P. L., Scherer N. F., The first events in photosynthesis: Electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J. Phys. Chem. B 103, 2014–2032 (1999).
Bakulin A. A., Morgan S. E., Kehoe T. B., Wilson M. W. B., Chin A. W., Zigmantas D., Egorova D., Rao A., Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016). PubMed
Renger T., Theory of optical spectra involving charge transfer states: Dynamic localization predicts a temperature dependent optical band shift. Phys. Rev. Lett. 93, 188101 (2004). PubMed
Mančal T., Valkunas L., Fleming G. R., Theory of exciton–charge transfer state coupled systems. Chem. Phys. Lett. 432, 301–305 (2006).
Hyeon-Deuk K., Tanimura Y., Cho M., Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems. J. Chem. Phys. 127, 075101 (2007). PubMed
V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, 2003).
Perlík V., Seibt J., Cranston L. J., Cogdell R. J., Lincoln C. N., Savolainen J., Šanda F., Mančal T., Hauer J., Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J. Chem. Phys. 142, 212434 (2015). PubMed
Malý P., Somsen O. J. G., Novoderezhkin V. I., Mančal T., van Grondelle R., The role of resonant vibrations in electronic energy transfer. ChemPhysChem 17, 1356–1368 (2016). PubMed PMC
Malý P., Novoderezhkin V. I., van Grondelle R., Mančal T., Electron-vibrational coupling decreases trapping by low-energy states in photosynthesis. Chem. Phys. 522, 69–76 (2019).
Kreisbeck C., Kramer T., Aspuru-Guzik A., Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10, 4045–4054 (2014). PubMed
Fujihashi Y., Fleming G. R., Ishizaki A., Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. J. Chem. Phys. 142, 212403 (2015). PubMed
Ishizaki A., Fleming G. R., Insights into photosynthetic energy transfer gained from free-energy structure: Coherent transport, incoherent hopping, and vibrational assistance revisited. J. Phys. Chem. B 125, 3286–3295 (2021). PubMed
Fuller F. D., Wilcox D. E., Ogilvie J. P., Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. Opt. Express 22, 1018 (2014). PubMed
Siddiqui A. M., Cirmi G., Brida D., Kärtner F. X., Cerullo G., Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy. Opt. Lett. 34, 3592–3594 (2009). PubMed
Diers J. R., Zhu Y., Blankenship R. E., Bocian D. F., Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics. J. Phys. Chem. 100, 8573–8579 (1996). PubMed
Seibt J., Pullerits T., Beating signals in 2D spectroscopy: Electronic or nuclear coherences? application to a quantum dot model system. J. Phys. Chem. C 117, 18728–18737 (2013).
Song Y., Hellmann C., Stingelin N., Scholes G. D., The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. J. Chem. Phys. 142, 212410 (2015). PubMed
Butkus V., Zigmantas D., Valkunas L., Abramavicius D., Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).
Senlik S. S., Policht V. R., Ogilvie J. P., Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics. J. Phys. Chem. Lett. 6, 2413–2420 (2015). PubMed
Lindblad G., Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975).
B. Fain, Irreversibilities in Quantum Mechanics (Springer, 2002).
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).
Mančal T., A decade with quantum coherence : How our past became classical and the future turned quantum. Chem. Phys. 532, 110663 (2020).
Olšina J., Kramer T., Kreisbeck C., Mančal T., Exact stochastic unraveling of an optical coherence dynamics by cumulant expansion. J. Chem. Phys. 141, 164109 (2014). PubMed
Mančal T., Dostál J., Pšenčík J., Zigmantas D., Transfer of vibrational coherence through incoherent energy transfer process in Förster limit. Can. J. Chem. 92, 135–143 (2014).