The Role of Resonant Vibrations in Electronic Energy Transfer

. 2016 May 04 ; 17 (9) : 1356-68. [epub] 20160322

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26910485

Grantová podpora
267333 European Research Council - International

Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two-level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer-lived mixed coherences.

Zobrazit více v PubMed

Brixner T., Mančal T., Stiopkin I. V., Fleming G. R., J. Chem. Phys. 2004, 121, 4221–4236. PubMed

Engel G. S., Calhoun T. R., Read E. L., Ahn T. K., Mančal T., Cheng Y. C., Blankenship R. E., Fleming G. R., Nature 2007, 446, 782–786. PubMed

Hayes D., Wen J., Panitchayangkoon G., Blankenship R. E., Engel G. S., Faraday Discuss. 2011, 150, 459. PubMed

Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Nature 2010, 463, 644–647. PubMed

Calhoun T. R., Ginsberg N. S., Schlau-Cohen G. S., Cheng Y. C., Ballottari M., Bassi R., Fleming G. R., J. Phys. Chem. B 2009, 113, 16291–16295. PubMed

Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Nat. Phys. 2014, 10, 676–682. PubMed PMC

Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Nat. Chem. 2014, 6, 706–711. PubMed

Cheng Y. C., Fleming G. R., J. Phys. Chem. A 2008, 112, 4254–4260. PubMed

Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., J. Phys. Chem. B 2011, 115, 758–764. PubMed PMC

Christensson N., Kauffmann H. F., Pullerits T., Mančal T., J. Phys. Chem. B 2012, 116, 7449–7454. PubMed PMC

Kolli A., O'Reilly E. J., Scholes G. D., Olaya-Castro A., J. Chem. Phys. 2012, 137, 174109. PubMed

Hein B., Kreisbeck C., Kramer T., Rodríguez M., New J. Phys. 2012, 14, 023018.

Chin A. W., Huelga S. F., Plenio M. B., Philos. Trans. R. Soc. London Ser. A 2012, 370, 3638–3657. PubMed

Chenu A., Christensson N., Kauffmann H. F., Mančal T., Sci. Rep. 2013, 3, 2029. PubMed PMC

Butkus V., Zigmantas D., Abramavicius D., Valkunas L., Chem. Phys. Lett. 2013, 587, 93–98.

Tiwari V., Peters W. K., Jonas D. M., Proc. Natl. Acad. Sci. USA 2013, 110, 1203–1208. PubMed PMC

Chin A. W., Prior J., Rosenbach R., Caycedo-Soler F., Huelga S. F., Plenio M. B., Nat. Phys. 2013, 9, 113–118.

Kreisbeck C., Kramer T., Aspuru-Guzik A., J. Chem. Theory Comput. 2014, 10, 4045–4054. PubMed

Dijkstra A. G., Wang C., Cao J., Fleming G. R., J. Phys. Chem. Lett. 2015, 6, 627–632. PubMed

Novoderezhkin V., Romero E., van Grondelle R., Phys. Chem. Chem. Phys. 2015, 17, 30828–30841. PubMed

Jean J. M., Friesner R. A., Fleming G. R., J. Chem. Phys. 1992, 96, 5827.

Jean J., Jean J., J. Chem. Phys. 1994, 101, 10464.

Egorova D., Thoss M., Domcke W., Wang H., J. Chem. Phys. 2003, 119, 2761. PubMed

Egorova D., Domcke W., Chem. Phys. Lett. 2004, 384, 157–164.

Novoderezhkin V. I., Yakovlev A. G., van Grondelle R., Shuvalov V. A., J. Phys. Chem. B 2004, 108, 7445–7457.

Tanaka M., Tanimura Y., J. Phys. Soc. Jpn. 2009, 78, 073802.

Tanimura Y., J. Chem. Phys. 2012, 137, 22A550. PubMed

Kreisbeck C., Kramer T., Rodríguez M., Hein B., J. Chem. Theory Comput. 2011, 7, 2166–2174. PubMed

Kolli A., Nazir A., Olaya-Castro A., J. Chem. Phys. 2011, 135, 154112. PubMed

Chin A. W., Rivas A., Huelga S. F., Plenio M. B., J. Math. Phys. 2010, 51, 092109.

Prior J., Chin A. W., Huelga S. F., Plenio M. B., Phys. Rev. Lett. 2010, 105, 050404. PubMed

Förster T. in Modern Quantum Chemistry: Istanbul Lectures (Ed.: O. Sinanoglu), Academic Press, London, 1965, Chapter III B, pp. 93–137.

Gelin M. F., Sharp L. Z., Egorova D., Domcke W., J. Chem. Phys. 2012, 136, 034507. PubMed

Sharp L. Z., Egorova D., J. Chem. Phys. 2013, 139, 144304. PubMed

Butkus V., Valkunas L., Abramavicius D., J. Chem. Phys. 2014, 140. PubMed

Schröter M., Ivanov S., Schulze J., Polyutov S., Yan Y., Pullerits T., Kühn O., Phys. Rep. 2015, 567, 1–78.

Ferretti M., Novoderezhkin V. I., Romero E., Augulis R., Pandit A., Zigmantas D., Grondelle R. V., Phys. Chem. Chem. Phys. 2014, 16, 9930–9939. PubMed

Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., J. Phys. Chem. Lett. 2011, 2, 1771–1776. PubMed PMC

Novoderezhkin V., van Grondelle R., J. Phys. Chem. B 2013, 117, 11076–11090. PubMed

Mukamel S., Principles of Nonlinear Spectroscopy, Oxford University Press, Oxford, 1995.

Beenken W. J. D., Dahlbom M., Kjellberg P., Pullerits T., J. Chem. Phys. 2002, 117, 5810–5820.

Roden J., Strunz W. T., Whaley K. B., Eisfeld A., J. Chem. Phys. 2012, 137, 204110. PubMed

Novelli F., Nazir A., Richards G. H., Roozbeh A., Krystyna E., Curmi P. M. G., Davis J. A., J. Phys. Chem. Lett., 2015, 4573. PubMed

Rutkauskas D., Novoderezhkin V. I., Gall A., Olsen J., Cogdell R. J., Hunter C. N., van Grondelle R., Biophys. J. 2006, 90, 2475–2485. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center

. 2022 Jan 07 ; 8 (1) : eabk0953. [epub] 20220105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...