The Role of Resonant Vibrations in Electronic Energy Transfer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
267333
European Research Council - International
PubMed
26910485
PubMed Central
PMC5021137
DOI
10.1002/cphc.201500965
Knihovny.cz E-zdroje
- Klíčová slova
- energy transfer, resonant vibrations, time-resolved spectroscopy, two-dimensional electronic spectroscopy, vibronic dynamics,
- MeSH
- přenos energie * MeSH
- vibrace * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two-level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer-lived mixed coherences.
Institute of Physics Charles University Prague Ke Karlovu 5 12116 Prague Czech Republic
Netherlands Defence Academy P O Box 10000 1780 CA Den Helder The Netherlands
Zobrazit více v PubMed
Brixner T., Mančal T., Stiopkin I. V., Fleming G. R., J. Chem. Phys. 2004, 121, 4221–4236. PubMed
Engel G. S., Calhoun T. R., Read E. L., Ahn T. K., Mančal T., Cheng Y. C., Blankenship R. E., Fleming G. R., Nature 2007, 446, 782–786. PubMed
Hayes D., Wen J., Panitchayangkoon G., Blankenship R. E., Engel G. S., Faraday Discuss. 2011, 150, 459. PubMed
Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Nature 2010, 463, 644–647. PubMed
Calhoun T. R., Ginsberg N. S., Schlau-Cohen G. S., Cheng Y. C., Ballottari M., Bassi R., Fleming G. R., J. Phys. Chem. B 2009, 113, 16291–16295. PubMed
Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Nat. Phys. 2014, 10, 676–682. PubMed PMC
Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Nat. Chem. 2014, 6, 706–711. PubMed
Cheng Y. C., Fleming G. R., J. Phys. Chem. A 2008, 112, 4254–4260. PubMed
Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., J. Phys. Chem. B 2011, 115, 758–764. PubMed PMC
Christensson N., Kauffmann H. F., Pullerits T., Mančal T., J. Phys. Chem. B 2012, 116, 7449–7454. PubMed PMC
Kolli A., O'Reilly E. J., Scholes G. D., Olaya-Castro A., J. Chem. Phys. 2012, 137, 174109. PubMed
Hein B., Kreisbeck C., Kramer T., Rodríguez M., New J. Phys. 2012, 14, 023018.
Chin A. W., Huelga S. F., Plenio M. B., Philos. Trans. R. Soc. London Ser. A 2012, 370, 3638–3657. PubMed
Chenu A., Christensson N., Kauffmann H. F., Mančal T., Sci. Rep. 2013, 3, 2029. PubMed PMC
Butkus V., Zigmantas D., Abramavicius D., Valkunas L., Chem. Phys. Lett. 2013, 587, 93–98.
Tiwari V., Peters W. K., Jonas D. M., Proc. Natl. Acad. Sci. USA 2013, 110, 1203–1208. PubMed PMC
Chin A. W., Prior J., Rosenbach R., Caycedo-Soler F., Huelga S. F., Plenio M. B., Nat. Phys. 2013, 9, 113–118.
Kreisbeck C., Kramer T., Aspuru-Guzik A., J. Chem. Theory Comput. 2014, 10, 4045–4054. PubMed
Dijkstra A. G., Wang C., Cao J., Fleming G. R., J. Phys. Chem. Lett. 2015, 6, 627–632. PubMed
Novoderezhkin V., Romero E., van Grondelle R., Phys. Chem. Chem. Phys. 2015, 17, 30828–30841. PubMed
Jean J. M., Friesner R. A., Fleming G. R., J. Chem. Phys. 1992, 96, 5827.
Jean J., Jean J., J. Chem. Phys. 1994, 101, 10464.
Egorova D., Thoss M., Domcke W., Wang H., J. Chem. Phys. 2003, 119, 2761. PubMed
Egorova D., Domcke W., Chem. Phys. Lett. 2004, 384, 157–164.
Novoderezhkin V. I., Yakovlev A. G., van Grondelle R., Shuvalov V. A., J. Phys. Chem. B 2004, 108, 7445–7457.
Tanaka M., Tanimura Y., J. Phys. Soc. Jpn. 2009, 78, 073802.
Tanimura Y., J. Chem. Phys. 2012, 137, 22A550. PubMed
Kreisbeck C., Kramer T., Rodríguez M., Hein B., J. Chem. Theory Comput. 2011, 7, 2166–2174. PubMed
Kolli A., Nazir A., Olaya-Castro A., J. Chem. Phys. 2011, 135, 154112. PubMed
Chin A. W., Rivas A., Huelga S. F., Plenio M. B., J. Math. Phys. 2010, 51, 092109.
Prior J., Chin A. W., Huelga S. F., Plenio M. B., Phys. Rev. Lett. 2010, 105, 050404. PubMed
Förster T. in Modern Quantum Chemistry: Istanbul Lectures (Ed.: O. Sinanoglu), Academic Press, London, 1965, Chapter III B, pp. 93–137.
Gelin M. F., Sharp L. Z., Egorova D., Domcke W., J. Chem. Phys. 2012, 136, 034507. PubMed
Sharp L. Z., Egorova D., J. Chem. Phys. 2013, 139, 144304. PubMed
Butkus V., Valkunas L., Abramavicius D., J. Chem. Phys. 2014, 140. PubMed
Schröter M., Ivanov S., Schulze J., Polyutov S., Yan Y., Pullerits T., Kühn O., Phys. Rep. 2015, 567, 1–78.
Ferretti M., Novoderezhkin V. I., Romero E., Augulis R., Pandit A., Zigmantas D., Grondelle R. V., Phys. Chem. Chem. Phys. 2014, 16, 9930–9939. PubMed
Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U., J. Phys. Chem. Lett. 2011, 2, 1771–1776. PubMed PMC
Novoderezhkin V., van Grondelle R., J. Phys. Chem. B 2013, 117, 11076–11090. PubMed
Mukamel S., Principles of Nonlinear Spectroscopy, Oxford University Press, Oxford, 1995.
Beenken W. J. D., Dahlbom M., Kjellberg P., Pullerits T., J. Chem. Phys. 2002, 117, 5810–5820.
Roden J., Strunz W. T., Whaley K. B., Eisfeld A., J. Chem. Phys. 2012, 137, 204110. PubMed
Novelli F., Nazir A., Richards G. H., Roozbeh A., Krystyna E., Curmi P. M. G., Davis J. A., J. Phys. Chem. Lett., 2015, 4573. PubMed
Rutkauskas D., Novoderezhkin V. I., Gall A., Olsen J., Cogdell R. J., Hunter C. N., van Grondelle R., Biophys. J. 2006, 90, 2475–2485. PubMed PMC