Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center

. 2017 Sep ; 3 (9) : e1603141. [epub] 20170906

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28913419

Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. On the basis of spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion depends critically on the assignment of the coherences to the evolution of excitonic superpositions. We demonstrate that, for a bacterial reaction center protein, long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited-state coherences shifted to the ground state of the chromophores. We show that the appearance of these coherences arises from a release of electronic energy during energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction center, and they call for a reexamination of claims of quantum energy transfer in photosynthesis.

Zobrazit více v PubMed

Vos M. H., Jones M. R., Hunter C. N., Breton J., Lambry J.-C., Martin J.-L., Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33, 6750–6757 (1994). PubMed

Savikhin S., Zhu Y., Lin S., Blankenship R. E., Struve W. S., Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J. Phys. Chem. 98, 10322–10334 (1994). PubMed

Arnett D. C., Moser C. C., Dutton P. L., Scherer N. F., The first events in photosynthesis: Electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J. Phys. Chem. B 103, 2014–2032 (1999).

Savikhin S., Buck D. R., Struve W. S., Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).

Jonas D. M., Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). PubMed

Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed

Nemeth A., Milota F., Mančal T., Lukeš V., Kauffmann H. F., Sperling J., Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chem. Phys. Lett. 459, 94–99 (2008).

Brixner T., Stenger J., Vaswani H. M., Cho M., Blankenship R. E., Fleming G. R., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed

Zigmantas D., Read E. L., Mančal T., Brixner T., Gardiner A. T., Cogdell R. J., Fleming G. R., Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex. Proc. Natl. Acad. Sci. U.S.A. 103, 12672–12677 (2006). PubMed PMC

Thyrhaug E., Žídek K., Dostál J., Bína D., Zigmantas D., Exciton structure and energy transfer in the Fenna–Matthews–Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016). PubMed

Hochstrasser R. M., Two-dimensional IR-spectroscopy: Polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).

Schlau-Cohen G. S., Ishizaki A., Calhoun T. R., Ginsberg N. S., Ballottari M., Bassi R., Fleming G. R., Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012). PubMed

Westenhoff S., Paleček D., Edlund P., Smith P., Zigmantas D., Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012). PubMed

Lim J., Paleček D., Caycedo-Soler F., Lincoln C. N., Prior J., von Berlepsch H., Huelga S. F., Plenio M. B., Zigmantas D., Hauer J., Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755 (2015). PubMed PMC

Li H., Bristow A. D., Siemens M. E., Moody G., Cundiff S. T., Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4, 1390 (2013). PubMed PMC

Milota F., Prokhorenko V. I., Mancal T., von Berlepsch H., Bixner O., Kauffmann H. F., Hauer J., Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013). PubMed PMC

Butkus V., Zigmantas D., Valkunas L., Abramavicius D., Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

Seibt J., Hansen T., Pullerits T., 3D spectroscopy of vibrational coherences in quantum dots: Theory. J. Phys. Chem. B 117, 11124–11133 (2013). PubMed

Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). PubMed

Lee H., Cheng Y.-C., Fleming G. R., Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed

Jonas D. M., Lang M. J., Nagasawa Y., Joo T., Fleming G. R., Pump−probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26. J. Phys. Chem. 100, 12660–12673 (1996).

Ryu I. S., Dong H., Fleming G. R., Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center. J. Phys. Chem. B 118, 1381–1388 (2014). PubMed

Jackson J. A., Lin S., Taguchi A. K. W., Williams J. C., Allen J. P., Woodbury N. W., Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing. J. Phys. Chem. B 101, 5747–5754 (1997).

Cherepy N. J., Shreve A. P., Moore L. J., Boxer S. G., Mathies R. A., Temperature dependence of the Qy resonance Raman spectra of bacteriochlorophylls, the primary electron donor, and bacteriopheophytins in the bacterial photosynthetic reaction center. Biochemistry 36, 8559–8566 (1997). PubMed

Czarnecki K., Diers J. R., Chynwat V., Erickson J. P., Frank H. A., Bocian D. F., Characterization of the strongly coupled, low-frequency vibrational modes of the special pair of photosynthetic reaction centers via isotopic labeling of the cofactors. J. Am. Chem. Soc. 119, 415–426 (1997).

Christensson N., Kauffmann H. F., Pullerits T., Mančal T., Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC

Mančal T., Dostál J., Pšenčík J., Zigmantas D., Transfer of vibrational coherence through incoherent energy transfer process in Förster limit. Can. J. Chem. 92, 135–143 (2014).

Tiwari V., Peters W. K., Jonas D. M., Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–1208 (2013). PubMed PMC

Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed

Womick J. M., Moran A. M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed

Chin A. W., Prior J., Rosenbach R., Caycedo-Soler F., Huelga S. F., Plenio M. B., The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013).

Perlík V., Seibt J., Cranston L. J., Cogdell R. J., Lincoln C. N., Savolainen J., Šanda F., Mančal T., Hauer J., Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J. Chem. Phys. 142, 212434 (2015). PubMed

Ferretti M., Novoderezhkin V. I., Romero E., Augulis R., Pandit A., Zigmantas D., van Grondelle R., The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 9930–9939 (2014). PubMed

Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC

Schulze J., Shibl M. F., Al-Marri M. J., Kühn O., Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex. J. Chem. Phys. 144, 185101 (2016). PubMed

Farhoosh R., Chynwat V., Gebhard R., Lugtenburg J., Frank H. A., Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of π-electron conjugation. Photochem. Photobiol. 66, 97–104 (1997). PubMed

Brixner T., Mančal T., Stiopkin I. V., Fleming G. R., Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004). PubMed

Augulis R., Zigmantas D., Two-dimensional electronic spectroscopy with double modulation lock-in detection: Enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011). PubMed

Augulis R., Zigmantas D., Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy. J. Opt. Soc. Am. B 30, 1770–1774 (2013).

D. Paleček, Quantum coherence for light harvesting, thesis, Lund University (2015).

Rätsep M., Cai Z.-L., Reimers J. R., Freiberg A., Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J. Chem. Phys. 134, 024506 (2011). PubMed

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

Milota F., Lincoln C. N., Hauer J., Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry. Opt. Express 21, 15904–15911 (2013). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy

. 2022 Feb 10 ; 13 (5) : 1266-1271. [epub] 20220128

Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center

. 2022 Jan 07 ; 8 (1) : eabk0953. [epub] 20220105

Quantum biology revisited

. 2020 Apr ; 6 (14) : eaaz4888. [epub] 20200403

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...