Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28913419
PubMed Central
PMC5587020
DOI
10.1126/sciadv.1603141
PII: 1603141
Knihovny.cz E-zdroje
- MeSH
- Bacteria metabolismus MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza MeSH
- fyziologie bakterií * MeSH
- kvantová teorie * MeSH
- přenos energie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. On the basis of spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion depends critically on the assignment of the coherences to the evolution of excitonic superpositions. We demonstrate that, for a bacterial reaction center protein, long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited-state coherences shifted to the ground state of the chromophores. We show that the appearance of these coherences arises from a release of electronic energy during energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction center, and they call for a reexamination of claims of quantum energy transfer in photosynthesis.
Department of Chemical Physics Charles University Ke Karlovu 3 CZ 121 16 Praha 2 Czech Republic
Department of Chemical Physics Lund University Box 124 SE 22100 Lund Sweden
Zobrazit více v PubMed
Vos M. H., Jones M. R., Hunter C. N., Breton J., Lambry J.-C., Martin J.-L., Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33, 6750–6757 (1994). PubMed
Savikhin S., Zhu Y., Lin S., Blankenship R. E., Struve W. S., Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J. Phys. Chem. 98, 10322–10334 (1994). PubMed
Arnett D. C., Moser C. C., Dutton P. L., Scherer N. F., The first events in photosynthesis: Electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J. Phys. Chem. B 103, 2014–2032 (1999).
Savikhin S., Buck D. R., Struve W. S., Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).
Jonas D. M., Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). PubMed
Engel G. S., Calhoun T. R., Read E. L., Ahn T.-K., Mančal T., Cheng Y.-C., Blankenship R. E., Fleming G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed
Nemeth A., Milota F., Mančal T., Lukeš V., Kauffmann H. F., Sperling J., Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chem. Phys. Lett. 459, 94–99 (2008).
Brixner T., Stenger J., Vaswani H. M., Cho M., Blankenship R. E., Fleming G. R., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed
Zigmantas D., Read E. L., Mančal T., Brixner T., Gardiner A. T., Cogdell R. J., Fleming G. R., Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex. Proc. Natl. Acad. Sci. U.S.A. 103, 12672–12677 (2006). PubMed PMC
Thyrhaug E., Žídek K., Dostál J., Bína D., Zigmantas D., Exciton structure and energy transfer in the Fenna–Matthews–Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016). PubMed
Hochstrasser R. M., Two-dimensional IR-spectroscopy: Polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).
Schlau-Cohen G. S., Ishizaki A., Calhoun T. R., Ginsberg N. S., Ballottari M., Bassi R., Fleming G. R., Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012). PubMed
Westenhoff S., Paleček D., Edlund P., Smith P., Zigmantas D., Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012). PubMed
Lim J., Paleček D., Caycedo-Soler F., Lincoln C. N., Prior J., von Berlepsch H., Huelga S. F., Plenio M. B., Zigmantas D., Hauer J., Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755 (2015). PubMed PMC
Li H., Bristow A. D., Siemens M. E., Moody G., Cundiff S. T., Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4, 1390 (2013). PubMed PMC
Milota F., Prokhorenko V. I., Mancal T., von Berlepsch H., Bixner O., Kauffmann H. F., Hauer J., Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013). PubMed PMC
Butkus V., Zigmantas D., Valkunas L., Abramavicius D., Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).
Seibt J., Hansen T., Pullerits T., 3D spectroscopy of vibrational coherences in quantum dots: Theory. J. Phys. Chem. B 117, 11124–11133 (2013). PubMed
Collini E., Wong C. Y., Wilk K. E., Curmi P. M. G., Brumer P., Scholes G. D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). PubMed
Lee H., Cheng Y.-C., Fleming G. R., Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed
Jonas D. M., Lang M. J., Nagasawa Y., Joo T., Fleming G. R., Pump−probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26. J. Phys. Chem. 100, 12660–12673 (1996).
Ryu I. S., Dong H., Fleming G. R., Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center. J. Phys. Chem. B 118, 1381–1388 (2014). PubMed
Jackson J. A., Lin S., Taguchi A. K. W., Williams J. C., Allen J. P., Woodbury N. W., Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing. J. Phys. Chem. B 101, 5747–5754 (1997).
Cherepy N. J., Shreve A. P., Moore L. J., Boxer S. G., Mathies R. A., Temperature dependence of the Qy resonance Raman spectra of bacteriochlorophylls, the primary electron donor, and bacteriopheophytins in the bacterial photosynthetic reaction center. Biochemistry 36, 8559–8566 (1997). PubMed
Czarnecki K., Diers J. R., Chynwat V., Erickson J. P., Frank H. A., Bocian D. F., Characterization of the strongly coupled, low-frequency vibrational modes of the special pair of photosynthetic reaction centers via isotopic labeling of the cofactors. J. Am. Chem. Soc. 119, 415–426 (1997).
Christensson N., Kauffmann H. F., Pullerits T., Mančal T., Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC
Mančal T., Dostál J., Pšenčík J., Zigmantas D., Transfer of vibrational coherence through incoherent energy transfer process in Förster limit. Can. J. Chem. 92, 135–143 (2014).
Tiwari V., Peters W. K., Jonas D. M., Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–1208 (2013). PubMed PMC
Fuller F. D., Pan J., Gelzinis A., Butkus V., Senlik S. S., Wilcox D. E., Yocum C. F., Valkunas L., Abramavicius D., Ogilvie J. P., Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed
Womick J. M., Moran A. M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed
Chin A. W., Prior J., Rosenbach R., Caycedo-Soler F., Huelga S. F., Plenio M. B., The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013).
Perlík V., Seibt J., Cranston L. J., Cogdell R. J., Lincoln C. N., Savolainen J., Šanda F., Mančal T., Hauer J., Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J. Chem. Phys. 142, 212434 (2015). PubMed
Ferretti M., Novoderezhkin V. I., Romero E., Augulis R., Pandit A., Zigmantas D., van Grondelle R., The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 9930–9939 (2014). PubMed
Romero E., Augulis R., Novoderezhkin V. I., Ferretti M., Thieme J., Zigmantas D., van Grondelle R., Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC
Schulze J., Shibl M. F., Al-Marri M. J., Kühn O., Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex. J. Chem. Phys. 144, 185101 (2016). PubMed
Farhoosh R., Chynwat V., Gebhard R., Lugtenburg J., Frank H. A., Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of π-electron conjugation. Photochem. Photobiol. 66, 97–104 (1997). PubMed
Brixner T., Mančal T., Stiopkin I. V., Fleming G. R., Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004). PubMed
Augulis R., Zigmantas D., Two-dimensional electronic spectroscopy with double modulation lock-in detection: Enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011). PubMed
Augulis R., Zigmantas D., Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy. J. Opt. Soc. Am. B 30, 1770–1774 (2013).
D. Paleček, Quantum coherence for light harvesting, thesis, Lund University (2015).
Rätsep M., Cai Z.-L., Reimers J. R., Freiberg A., Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J. Chem. Phys. 134, 024506 (2011). PubMed
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).
Milota F., Lincoln C. N., Hauer J., Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry. Opt. Express 21, 15904–15911 (2013). PubMed
Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy