Vibronic origin of long-lived coherence in an artificial molecular light harvester
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
319130
European Research Council - International
PubMed
26158602
PubMed Central
PMC4510969
DOI
10.1038/ncomms8755
PII: ncomms8755
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Natural and artificial light-harvesting processes have recently gained new interest. Signatures of long-lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate. In this macroscopically aligned tubular system, polarization-controlled 2D spectroscopy delivers an uncongested and specific optical response as an ideal foundation for an in-depth theoretical description. We derive analytical expressions that show under which general conditions vibronic coupling leads to prolonged excited-state coherence.
Departamento de Física Aplicada Universidad Politécnica de Cartagena Cartagena 30202 Spain
Department of Chemical Physics Lund University PO Box 124 SE 22100 Lund Sweden
Institut für Theoretische Physik Universität Ulm Albert Einstein Allee 11 89069 Ulm Germany
Photonics Institute Vienna University of Technology Gusshausstrasse 27 1040 Vienna Austria
Zobrazit více v PubMed
van Amerongen H., Valkunas L. & van Grondelle R. Photosynthetic Excitons World Scientific (2000).
Blankenship R. E. Molecular Mechanisms of Photosynthesis Blackwell Science (2002).
Renger T., May V. & Kühn O. Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys. Rep. 343, 137–254 (2001).
Huelga S. F. & Plenio M. B. Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013).
Jonas D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). PubMed
Engel G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). PubMed
Dostál J., Mančal T., Vácha F., Pšenčík J. & Zigmantas D. Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140, 115103 (2014). PubMed
Collini E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). PubMed
Romero E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014). PubMed PMC
Fuller F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). PubMed
Chin A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2013).
Plenio M. B., Almeida J. & Huelga S. F. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139, 235102 (2013). PubMed
Chin A. W., Huelga S. F. & Plenio M. B. Coherence and decoherence in biological system: principles of noise assisted transport and the origin of long-lived coherences. Phil. Trans. R. Soc. A 370, 3638–3657 (2012). PubMed
Kolli A., O'Reilly E. J., Scholes G. D. & Olaya-Castro A. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137, 174109 (2012). PubMed
Tiwari V., Peters W. K. & Jonas D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013). PubMed PMC
Lee H., Cheng Y.-C. & Fleming G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007). PubMed
Ishizaki A., Calhoun T. R., Schlau-Cohen G. S. & Fleming G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010). PubMed
Hayes D., Griffin G. B. & Engel G. S. Engineering coherence among excited states in synthetic heterodimer systems. Science 340, 1431–1434 (2013). PubMed
Christensson N. et al. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115, 5383–5391 (2011). PubMed
Caycedo-Soler F., Chin A. W., Almeida J., Huelga S. F. & Plenio M. B. The nature of the low energy band of the Fenna-Matthews-Olson complex: vibronic signatures. J. Chem. Phys. 136, 155102 (2012). PubMed
Christensson N., Kauffmann H. F., Pullerits T. & Mančal T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012). PubMed PMC
Heijs D.-J., Dijkstra A. G. & Knoester J. Ultrafast pump-probe spectroscopy of linear molecular aggregates: effects of exciton coherence and thermal dephasing. Chem. Phys. 341, 230–239 (2007).
Würthner F., Kaiser T. E. & Saha-Möller C. R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376–3410 (2011). PubMed
Eisele D. M. et al. Robust excitons inhabit soft supramolecular nanotubes. Proc. Natl Acad. Sci. USA 111, E3367–E3375 (2014). PubMed PMC
Yuen-Zhou J. et al. Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography. ACS Nano 8, 5527–5534 (2014). PubMed
Qiao Y. et al. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer. ACS Nano 9, 1552–1560 (2015). PubMed
von Berlepsch H. & Böttcher C. in J-Aggregates Vol. 2, ed. Kobayashi T. Ch. 4 119–153World Scientific (2012).
von Berlepsch H., Kirstein S. & Böttcher C. Effect of alcohols on J-aggregation of a carbocyanine dye. Langmuir 18, 7699–7705 (2002).
von Berlepsch H., Kirstein S. & Böttcher C. Controlling the helicity of tubular J-aggregates by chiral alcohols. J. Phys. Chem. B 107, 9646–9654 (2003).
von Berlepsch H. et al. Supramolecular structures of J-aggregates of carbocyanine dyes in solution. J. Phys. Chem. B 104, 5255–5262 (2000).
von Berlepsch H. et al. Stabilization of individual tubular J-aggregates by poly(vinyl alcohol). J. Phys. Chem. B 107, 14176–14184 (2003).
Eisele D. M. et al. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat. Chem. 4, 655–662 (2012). PubMed
Milota F. et al. Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013). PubMed PMC
Aydin M., Dede Ö. & Akins D. L. Density functional theory and Raman spectroscopy applied to structure and vibrational mode analysis of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro-benzimidazolocarbocyanine iodide and its aggregate. J. Chem. Phys. 134, 064325 (2011). PubMed
Rich C. C. & McHale J. L. Resonance Raman spectra of individual excitonically coupled chromophore aggregates. J. Phys. Chem. C 117, 10856–10865 (2013).
Butkus V., Zigmantas D., Abramavicius D. & Valkunas L. Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587, 93–98 (2013).
Womick J. M. & Moran A. M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. J. Phys. Chem. B 113, 15747–15759 (2009). PubMed
Womick J. M. & Moran A. M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011). PubMed
Del Rey M., Chin A. W., Huelga S. F. & Plenio M. B. Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism. J. Phys. Chem. Lett. 4, 903–907 (2013). PubMed
Hochstrasser R. M. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).
Read E. L. et al. Cross-peak-specific two-dimensional electronic spectroscopy. Proc. Natl Acad. Sci.USA 104, 14203–14208 (2007). PubMed PMC
Mukamel S. Principles of Nonlinear Optical Spectroscopy Oxford University Press (1995).
Perlík V. et al. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J. Chem. Phys. 142, 212434 (2015). PubMed
Schröter M. et al. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys. Rep. 567, 1–78 (2015).
Killoran N., Huelga S. F. & Plenio M. B. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture. Preprint at http://arxiv.org/abs/1412.4136 (2015). PubMed
Didraga C. et al. Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. J. Phys. Chem. B 108, 14976–14985 (2004).
Halpin A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196–201 (2014). PubMed
Chenu A. & Scholes G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015). PubMed
Falke S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014). PubMed
Brixner T., Mančal T., Stiopkin I. V. & Fleming G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004). PubMed
Augulis R. & Zigmantas D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011). PubMed
Augulis R. & Zigmantas D. Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy. J. Opt. Soc. Am. B 30, 1770–1774 (2013).