Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35089715
PubMed Central
PMC8842281
DOI
10.1021/acs.jpclett.1c04110
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.
Department of Chemistry Technical University of Denmark DK 2800 Kongens Lyngby Denmark
Division of Chemical Physics and NanoLund Lund University P O Box 124 22100 Lund Sweden
Zobrazit více v PubMed
Rossetti R.; Nakahara S.; Brus L. E. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution. J. Chem. Phys. 1983, 79 (2), 1086–1088. 10.1063/1.445834. DOI
Ekimov A. I.; Efros A. L.; Onushchenko A. A. Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun. 1993, 88, 947–950. 10.1016/0038-1098(93)90275-R. DOI
Murray C. B.; Norris D. J.; Bawendi M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115 (19), 8706–8715. 10.1021/ja00072a025. DOI
Meinardi F.; Colombo A.; Velizhanin K. A.; Simonutti R.; Lorenzon M.; Beverina L.; Viswanatha R.; Klimov V. I.; Brovelli S. Large-Area Luminescent Solar Concentrators Based on Stokes-Shift-Engineered Nanocrystals in a Mass-Polymerized PMMA Matrix. Nat. Photonics. 2014, 8 (5), 392–399. 10.1038/nphoton.2014.54. DOI
Kim T.; Kim K. H.; Kim S.; Choi S. M.; Jang H.; Seo H. K.; Lee H.; Chung D. Y.; Jang E. Efficient and Stable Blue Quantum Dot Light-Emitting Diode. Nature. 2020, 586 (7829), 385–389. 10.1038/s41586-020-2791-x. PubMed DOI
Bao J.; Bawendi M. G. A Colloidal Quantum Dot Spectrometer. Nature. 2015, 523 (7558), 67–70. 10.1038/nature14576. PubMed DOI
Klimov V. I. Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion. J. Phys. Chem. B 2006, 110 (34), 16827–16845. 10.1021/jp0615959. PubMed DOI
Klimov V. I.; Ivanov S. A.; Nanda J.; Achermann M.; Bezel I.; McGuire J. A.; Piryatinski A. Single-Exciton Optical Gain in Semiconductor Nanocrystals. Nature. 2007, 447 (7143), 441–446. 10.1038/nature05839. PubMed DOI
Schaller R. D.; Agranovich V. M.; Klimov V. I. High-Efficiency Carrier Multiplication through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States. Nat. Phys. 2005, 1 (3), 189–194. 10.1038/nphys151. DOI
Kambhampati P. Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots. Acc. Chem. Res. 2011, 44 (1), 1–13. 10.1021/ar1000428. PubMed DOI
Huang J.; Huang Z.; Yang Y.; Zhu H.; Lian T. Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue. J. Am. Chem. Soc. 2010, 132 (13), 4858–4864. 10.1021/ja100106z. PubMed DOI
Kambhampati P. Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale. J. Phys. Chem. C 2011, 115 (45), 22089–22109. 10.1021/jp2058673. DOI
Žídek K.; Zheng K.; Abdellah M.; Lenngren N.; Chábera P.; Pullerits T. Ultrafast Dynamics of Multiple Exciton Harvesting in the CdSe-ZnO System: Electron Injection versus Auger Recombination. Nano Lett. 2012, 12 (12), 6393–6399. 10.1021/nl303746d. PubMed DOI
Honarfar A.; Chabera P.; Lin W.; Meng J.; Mourad H.; Pankratova G.; Gorton L.; Zheng K.; Pullerits T. Ultrafast Spectroelectrochemistry Reveals Photoinduced Carrier Dynamics in Positively Charged CdSe Nanocrystals. J. Phys. Chem. C 2021, 125 (26), 14332–14337. 10.1021/acs.jpcc.1c02729. DOI
Shulenberger K. E.; Coppieters ’t Wallant S. C.; Klein M. D.; McIsaac A. R.; Goldzak T.; Berkinsky D. B.; Utzat H.; Barotov U.; Van Voorhis T.; Bawendi M. G. Resolving the Triexciton Recombination Pathway in CdSe/CdS Nanocrystals through State-Specific Correlation Measurements. Nano Lett. 2021, 21 (18), 7457–7464. 10.1021/acs.nanolett.0c05109. PubMed DOI
Kroupa D. M.; Pach G. F.; Vörös M.; Giberti F.; Chernomordik B. D.; Crisp R. W.; Nozik A. J.; Johnson J. C.; Singh R.; Klimov V. I.; Galli G.; Beard M. C. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. ACS Nano 2018, 12, 10084–10094. 10.1021/acsnano.8b04850. PubMed DOI
Honarfar A.; Mourad H.; Lin W.; Polukeev A.; Rahaman A.; Abdellah M.; Chábera P.; Pankratova G.; Gorton L.; Zheng K.; Pullerits T. Photoexcitation Dynamics in Electrochemically Charged CdSe Quantum Dots: From Hot Carrier Cooling to Auger Recombination of Negative Trions. ACS Appl. Energy Mater. 2020, 3 (12), 12525–12531. 10.1021/acsaem.0c02478. DOI
Karki K. J.; Widom J. R.; Seibt J.; Moody I.; Lonergan M. C.; Pullerits T.; Marcus A. H. Coherent Two-Dimensional Photocurrent Spectroscopy in a PbS Quantum Dot Photocell. Nat. Commun. 2014, 5 (1), 1–7. 10.1038/ncomms6869. PubMed DOI
Engel G. S.; Calhoun T. R.; Read E. L.; Ahn T.-K.; Mančal T.; Cheng Y.-C.; Blankenship R. E.; Fleming G. R. Evidence for Wavelike Energy Transfer through Quantum Coherence in Photosynthetic Systems. Nature 2007, 446 (7137), 782–786. 10.1038/nature05678. PubMed DOI
Brixner T.; Stenger J.; Vaswani H. M.; Cho M.; Blankenship R. E.; Fleming G. R. Two-Dimensional Spectroscopy of Electronic Couplings in Photosynthesis. Nature. 2005, 434 (7033), 625–628. 10.1038/nature03429. PubMed DOI
Seibt J.; Hansen T.; Pullerits T. 3D Spectroscopy of Vibrational Coherences in Quantum Dots: Theory. J. Phys. Chem. B 2013, 117 (38), 11124–11133. 10.1021/jp4011444. PubMed DOI
Cundiff S. T. Optical Three Dimensional Coherent Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16 (18), 8193–8200. 10.1039/C4CP00176A. PubMed DOI
Lenngren N.; Abdellah M. A.; Zheng K.; Al-Marri M. J.; Zigmantas D.; Žídek K.; Pullerits T. Hot Electron and Hole Dynamics in Thiol-Capped CdSe Quantum Dots Revealed by 2D Electronic Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18 (37), 26199–26204. 10.1039/C6CP04190F. PubMed DOI
Karki K. J.; Chen J.; Sakurai A.; Shi Q.; Gardiner A. T.; Kühn O.; Cogdell R. J.; Pullerits T. Before Förster. Initial Excitation in Photosynthetic Light Harvesting. Chem. Sci. 2019, 10 (34), 7923–7928. 10.1039/C9SC01888C. PubMed DOI PMC
Bukartė E.; Haufe A.; Paleček D.; Büchel C.; Zigmantas D. Revealing Vibronic Coupling in Chlorophyll C1 by Polarization-Controlled 2D Electronic Spectroscopy. Chem. Phys. 2020, 530, 110643.10.1016/j.chemphys.2019.110643. DOI
Mueller S.; Lüttig J.; Brenneis L.; Oron D.; Brixner T. Observing Multiexciton Correlations in Colloidal Semiconductor Quantum Dots via Multiple-Quantum Two-Dimensional Fluorescence Spectroscopy. ACS Nano 2021, 15 (3), 4647–4657. 10.1021/acsnano.0c09080. PubMed DOI
Wang Z.; Lei S.; Karki K. J.; Jakobsson A.; Pullerits T. Compressed Sensing for Reconstructing Coherent Multidimensional Spectra. J. Phys. Chem. A 2020, 124 (9), 1861–1866. 10.1021/acs.jpca.9b11681. PubMed DOI
Cassette E.; Pensack R. D.; Mahler B.; Scholes G. D. Room-Temperature Exciton Coherence and Dephasing in Two-Dimensional Nanostructures. Nat. Commun. 2015, 6, 1–7. 10.1038/ncomms7086. PubMed DOI
Fuller F. D.; Pan J.; Gelzinis A.; Butkus V.; Senlik S. S.; Wilcox D. E.; Yocum C. F.; Valkunas L.; Abramavicius D.; Ogilvie J. P. Vibronic Coherence in Oxygenic Photosynthesis. Nat. Chem. 2014, 6 (8), 706–711. 10.1038/nchem.2005. PubMed DOI
Pullerits T.; Zigmantas D.; Sundström V. Beatings in Electronic 2D Spectroscopy Suggest Another Role of Vibrations in Photosynthetic Light Harvesting. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (4), 1148–1149. 10.1073/pnas.1221058110. PubMed DOI PMC
Butkus V.; Zigmantas D.; Abramavicius D.; Valkunas L. Distinctive Character of Electronic and Vibrational Coherences in Disordered Molecular Aggregates. Chem. Phys. Lett. 2013, 587, 93–98. 10.1016/j.cplett.2013.09.043. DOI
Paleček D.; Edlund P.; Westenhoff S.; Zigmantas D. Quantum Coherence as a Witness of Vibronically Hot Energy Transfer in Bacterial Reaction Center. Sci. Adv. 2017, 3 (9), 1–6. 10.1126/sciadv.1603141. PubMed DOI PMC
Collini E.; Gattuso H.; Bolzonello L.; Casotto A.; Volpato A.; Dibenedetto C. N.; Fanizza E.; Striccoli M.; Remacle F. Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in CdSe Nanocrystals at Room Temperature. J. Phys. Chem. C 2019, 123 (51), 31286–31293. 10.1021/acs.jpcc.9b11153. DOI
Gellen T. A.; Lem J.; Turner D. B. Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy. Nano Lett. 2017, 17 (5), 2809–2815. 10.1021/acs.nanolett.6b05068. PubMed DOI
Mukamel S.Principles of Nonlinear Optical Spectroscopy; Oxford University Press: 1995.
Hamm P.; Zanni M. T.. Concepts and Methods of 2D Infrared Spectroscopy; Cambridge University Press: 2011.
Augulis R.; Zigmantas D. Two-Dimensional Electronic Spectroscopy with Double Modulation Lock-in Detection: Enhancement of Sensitivity and Noise Resistance. Opt. Express. 2011, 19 (14), 13126–13133. 10.1364/OE.19.013126. PubMed DOI
Konar A.; Sechrist R.; Song Y.; Policht V. R.; Laible P. D.; Bocian D. F.; Holten D.; Kirmaier C.; Ogilvie J. P. Electronic Interactions in the Bacterial Reaction Center Revealed by Two-Color 2D Electronic Spectroscopy. J. Phys. Chem. Lett. 2018, 9 (18), 5219–5225. 10.1021/acs.jpclett.8b02394. PubMed DOI
Gelzinis A.; Butkus V.; Songaila E.; Augulis R.; Gall A.; Büchel C.; Robert B.; Abramavicius D.; Zigmantas D.; Valkunas L. Mapping Energy Transfer Channels in Fucoxanthin-Chlorophyll Protein Complex. Biochim. Biophys. Acta - Bioenerg. 2015, 1847 (2), 241–247. 10.1016/j.bbabio.2014.11.004. PubMed DOI
Norris D.; Bawendi M. Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots. Phys. Rev. B - Condens. Matter Mater. Phys. 1996, 53 (24), 16338–16346. 10.1103/PhysRevB.53.16338. PubMed DOI
Caram J. R.; Zheng H.; Dahlberg P. D.; Rolczynski B. S.; Griffin G. B.; Dolzhnikov D. S.; Talapin D. V.; Engel G. S. Exploring Size and State Dynamics in CdSe Quantum Dots Using Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2014, 140 (8), 084701.10.1063/1.4865832. PubMed DOI PMC
Prezhdo O. V. Multiple Excitons and the Electron-Phonon Bottleneck in Semiconductor Quantum Dots: An Ab Initio Perspective. Chem. Phys. Lett. 2008, 460, 1–9. 10.1016/j.cplett.2008.03.099. DOI