In situ mapping of the energy flow through the entire photosynthetic apparatus
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27325098
DOI
10.1038/nchem.2525
PII: nchem.2525
Knihovny.cz E-zdroje
- MeSH
- Chlorobi metabolismus MeSH
- fotosyntéza MeSH
- přenos energie MeSH
- sluneční záření MeSH
- spektrální analýza metody MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- světlosběrné proteinové komplexy MeSH
Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents.
Zobrazit více v PubMed
J Phys Chem Lett. 2014 May 15;5(10):1743-7 PubMed
Photosynth Res. 1994 Jul;41(1):89-96 PubMed
Biophys J. 2003 Feb;84(2 Pt 1):1161-79 PubMed
Photosynth Res. 1991 May;28(2):77-87 PubMed
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 PubMed
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6134-9 PubMed
Biochemistry. 1998 Jul 28;37(30):10792-7 PubMed
Nature. 2005 Mar 31;434(7033):625-8 PubMed
Opt Express. 2011 Jul 4;19(14):13126-33 PubMed
J Phys Chem Lett. 2013 Oct 11;4(21):3636-3640 PubMed
J Phys Chem B. 2015 Jul 2;119(26):8321-9 PubMed
Photosynth Res. 1996 Oct;50(1):71-7 PubMed
J Am Chem Soc. 2014 Feb 5;136(5):2048-57 PubMed
Biochim Biophys Acta. 1993 Sep 13;1144(2):161-9 PubMed
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12672-7 PubMed
Photosynth Res. 2016 Apr;128(1):93-102 PubMed
Photosynth Res. 1988 Feb;15(2):177-89 PubMed
Photosynth Res. 2000;64(1):27-39 PubMed
Photosynth Res. 2010 Jun;104(2-3):257-74 PubMed
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9306-10 PubMed
Photosynth Res. 1990 Oct;26(1):39-48 PubMed
Photochem Photobiol. 1993;57(1):103-7 PubMed
Biochim Biophys Acta. 2001 Oct 30;1507(1-3):260-77 PubMed
Biophys J. 2006 Oct 15;91(8):2778-97 PubMed
Biophys J. 2004 Aug;87(2):1165-72 PubMed
Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots
Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions
Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria