Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria

. 2021 Apr 16 ; 11 (1) : 8354. [epub] 20210416

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33863954
Odkazy

PubMed 33863954
PubMed Central PMC8052352
DOI 10.1038/s41598-021-87664-3
PII: 10.1038/s41598-021-87664-3
Knihovny.cz E-zdroje

Chlorosomes are the main light-harvesting complexes of green photosynthetic bacteria that are adapted to a phototrophic life at low-light conditions. They contain a large number of bacteriochlorophyll c, d, or e molecules organized in self-assembling aggregates. Tight packing of the pigments results in strong excitonic interactions between the monomers, which leads to a redshift of the absorption spectra and excitation delocalization. Due to the large amount of disorder present in chlorosomes, the extent of delocalization is limited and further decreases in time after excitation. In this work we address the question whether the excitonic interactions between the bacteriochlorophyll c molecules are strong enough to maintain some extent of delocalization even after exciton relaxation. That would manifest itself by collective spontaneous emission, so-called superradiance. We show that despite a very low fluorescence quantum yield and short excited state lifetime, both caused by the aggregation, chlorosomes indeed exhibit superradiance. The emission occurs from states delocalized over at least two molecules. In other words, the dipole strength of the emissive states is larger than for a bacteriochlorophyll c monomer. This represents an important functional mechanism increasing the probability of excitation energy transfer that is vital at low-light conditions. Similar behaviour was observed also in one type of artificial aggregates, and this may be beneficial for their potential use in artificial photosynthesis.

Erratum v

PubMed

Zobrazit více v PubMed

Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black sea. Limnol. Oceanogr. 1992;37:150–155. doi: 10.4319/lo.1992.37.1.0150. DOI

Beatty JT, et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. 2005;102:9306–9310. doi: 10.1073/pnas.0503674102. PubMed DOI PMC

Choubeh RR, et al. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum. BBA-Bioenerget. 2019;1860:147–154. doi: 10.1016/j.bbabio.2018.12.004. PubMed DOI

Dostal J, Psencik J, Zigmantas D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 2016;8:705–710. doi: 10.1038/nchem.2525. PubMed DOI

Oostergetel GT, van Amerongen H, Boekema EJ. The chlorosome: A prototype for efficient light harvesting in photosynthesis. Photosynth. Res. 2010;104:245–255. doi: 10.1007/s11120-010-9533-0. PubMed DOI PMC

Psencik, J., Butcher, S. J. & Tuma, R. The structural basis of biological energy generation. Hohmann-Marriott, M. F. (ed.), pp. 77–109 (Springer, Dordrecht, 2014).

Bryant, D. A. & Canniffe, D. P. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. J. Phys. B Atom. Mol. Opt. Phys.51, 033001 (2018).

Wang J, Brune DC, Blankenship RE. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim. Biophys. Acta. 1990;1015:457–463. doi: 10.1016/0005-2728(90)90079-J. PubMed DOI

Frigaard NU, Takaichi S, Hirota M, Shimada K, Matsuura K. Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch. Microbiol. 1997;167:343–349. doi: 10.1007/s002030050453. DOI

Alster J, Zupcanova A, Vacha F, Psencik J. Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynth. Res. 2008;95:183–189. doi: 10.1007/s11120-007-9259-9. PubMed DOI

Psencik, J., & Mancal, T. Light harvesting in photosynthesis. Croce, R., van Grondelle, R., van Amerongen, H. & van Stokkum, I. H. M. (eds.), pp. 121–154 (CRC Press, Boca Raton, 2018).

Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. Lessons from nature about solar light harvesting. Nat. Chem. 2011;3:763–774. doi: 10.1038/nchem.1145. PubMed DOI

Frese R, et al. The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein—An absorption, linear dichroism, circular dichroism and Stark spectroscopy study. Photosynth. Res. 1997;54:115–126. doi: 10.1023/A:1005903613179. DOI

Dostal J, et al. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J. Am. Chem. Soc. 2012;134:11611–11617. doi: 10.1021/ja3025627. PubMed DOI

Taisova AS, Yakovlev AG, Fetisova ZG. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity. Biochemistry-Moscow. 2014;79:251–259. doi: 10.1134/S0006297914030110. PubMed DOI

Kuhn O, Sundstrom V. Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J. Chem. Phys. 1997;107:4154–4164. doi: 10.1063/1.474803. DOI

Fidler, A. F., Singh, V. P., Long, P. D., Dahlberg, P. D. & Engel, G. S. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Commun. 5, 1–6 (2014). PubMed PMC

Scholes GD. Limits of exciton delocalization in molecular aggregates. Faraday Discuss. 2020;221:265–280. doi: 10.1039/C9FD00064J. PubMed DOI

Savikhin S, et al. Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett. 1998;430:323–326. doi: 10.1016/S0014-5793(98)00691-7. PubMed DOI

Yakovlev A, Novoderezhkin V, Taisova A, Fetisova Z. Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra. Photosynth. Res. 2002;71:19–32. doi: 10.1023/A:1014995328869. PubMed DOI

Prokhorenko VI, Steensgaard DB, Holzwarth AR. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys. J. 2000;79:2105–2120. doi: 10.1016/S0006-3495(00)76458-7. PubMed DOI PMC

Orf GS, et al. Polymer-chlorosome nanocomposites consisting of non-native combinations of self-assembling bacteriochlorophylls. Langmuir. 2017;33:6427–6438. doi: 10.1021/acs.langmuir.7b01761. PubMed DOI

Causgrove TP, Brune DC, Blankenship RE, Olson JM. Fluorescence lifetimes of dimers and higher oligomers of bacteriochlorophyll c from Chlorobium limicola. Photosynth. Res. 1990;25:1–10. doi: 10.1007/BF00051730. PubMed DOI

Vinklarek IS, et al. Triplet state quenching of bacteriochlorophyll c aggregates in a protein-free environment of a chlorosome interior. Chem. Phys. 2020;529:110542. doi: 10.1016/j.chemphys.2019.110542. DOI

Jelley E. Spectral Absorption and fluorescence of dyes in the molecular state. Nature. 1936;138:1009–1010. doi: 10.1038/1381009a0. DOI

Kuhn, O., & Lochbrunner, S. Semiconductors and semimetals. Wuerfel, U., Thorwart, M., & Weber, E.R. (eds.), pp. 47–81 (2011).

Hamanaka Y, et al. Exciton delocalization length of merocyanine J-aggregates in Langmuir-Blodgett films studied from linear and nonlinear absorption measurements. Chem. Phys. Lett. 2002;363:233–240. doi: 10.1016/S0009-2614(02)01217-4. DOI

Monshouwer R, Abrahamsson M, van Mourik F, van Grondelle R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B. 1997;101:7241–7248. doi: 10.1021/jp963377t. DOI

Palacios MA, de Weerd FL, Ihalainen JA, van Grondelle R, van Amerongen H. Superradiance and exciton (de)localization in light-harvesting complex II from green plants? J. Phys. Chem. B. 2002;106:5782–5787. doi: 10.1021/jp014078t. DOI

Shoji S, Tamiaki H. Supramolecular light-harvesting antenna system by co-aggregates of zinc (bacterio)chlorophyll-a derivatives with biomimetic chlorosomal self-assemblies. Dyes Pigm. 2019;160:514–518. doi: 10.1016/j.dyepig.2018.08.026. DOI

Alster J, et al. beta-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes. Chem. Phys. 2010;373:90–97. doi: 10.1016/j.chemphys.2010.02.006. DOI

Matsubara S, Tamiaki H. Supramolecular chlorophyll aggregates inspired from specific light-harvesting antenna "chlorosome": Static nanostructure, dynamic construction process, and versatile application. J. Photochem. Photobiol. C. 2020;45:100385. doi: 10.1016/j.jphotochemrev.2020.100385. DOI

Klinger P, Arellano JB, Vacha FE, Hala J, Psencik J. Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: Implications for the self-assembly of chlorosomes. Photochem. Photobiol. 2004;80:572–578. doi: 10.1562/0031-8655(2004)080<0572:EOCAMD>2.0.CO;2. PubMed DOI

Collins AM, Timlin JA, Anthony SM, Montano GA. Amphiphilic block copolymers as flexible membrane materials generating structural and functional mimics of green bacterial antenna complexes. Nanoscale. 2016;8:15056–15063. doi: 10.1039/C6NR02497A. PubMed DOI

Wurth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013;8:1535–1550. doi: 10.1038/nprot.2013.087. PubMed DOI

Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst. 1983;108:1067–1071. doi: 10.1039/an9830801067. DOI

Rurack K, Spieles M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1000 nm. Anal. Chem. 2011;83:1232–1242. doi: 10.1021/ac101329h. PubMed DOI

Brune DC, Blankenship RE, Seely GR. Fluorescence quantum yields and lifetimes for bacteriochlorophyll-C. Photochem. Photobiol. 1988;47:759–763. doi: 10.1111/j.1751-1097.1988.tb02776.x. PubMed DOI

Knox RS, van Amerongen H. Refractive index dependence of the Förster resonance excitation transfer rate. J. Phys. Chem. B. 2002;106:5289–5293. doi: 10.1021/jp013927+. DOI

Psencik J, et al. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 2004;87:1165–1172. doi: 10.1529/biophysj.104.040956. PubMed DOI PMC

Matenova M, et al. Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives. Phys. Chem. Chem. Phys. 2014;16:16755–16764. doi: 10.1039/C4CP01311E. PubMed DOI

van Stokkum, I. H. M., van Oort, B., van Mourik, F., Gobets, B. & van Amerongen, H. Biophysical Techniques in Photosynthesis. Aartsma, T. J. & Matysik, J. (eds.), pp. 223–240 (Springer, Dordrecht,2008).

Choubeh RR, Wientjes E, Struik PC, Kirilovsky D, van Amerongen H. State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. BBA-Bioenergetics. 2018;1859:1059–1066. doi: 10.1016/j.bbabio.2018.06.008. PubMed DOI

Snellenburg JJ, Laptenok SP, Seger R, Mullen KM, van Stokkum IHM. Glotaran: A java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012;49:1–22. doi: 10.18637/jss.v049.i03. DOI

Mullen KM, van Stokkum IHM. TIMP: An R package for modeling multi-way spectroscopic measurements. J. Stat. Softw. 2007;18:1–46. doi: 10.1360/jos180001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...