Topology and expressed repertoire of the Felis catus T cell receptor loci
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
2016-27-F
Center for Companion Animal Health grant
PhD support
Chulalongkorn University
PubMed
31906850
PubMed Central
PMC6945721
DOI
10.1186/s12864-019-6431-5
PII: 10.1186/s12864-019-6431-5
Knihovny.cz E-resources
- Keywords
- Expressed repertoire, Feline, T cell receptor, TRA/TRD, TRB, TRG, V/J usage,
- MeSH
- Adaptive Immunity genetics MeSH
- Phylogeny MeSH
- Genetic Loci genetics MeSH
- Genomics methods MeSH
- Cats genetics immunology MeSH
- Humans MeSH
- Lymphoid Tissue metabolism MeSH
- Receptors, Antigen, T-Cell classification genetics MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Animals MeSH
- Check Tag
- Cats genetics immunology MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Receptors, Antigen, T-Cell MeSH
BACKGROUND: The domestic cat (Felis catus) is an important companion animal and is used as a large animal model for human disease. However, the comprehensive study of adaptive immunity in this species is hampered by the lack of data on lymphocyte antigen receptor genes and usage. The objectives of this study were to annotate the feline T cell receptor (TR) loci and to characterize the expressed repertoire in lymphoid organs of normal cats using high-throughput sequencing. RESULTS: The Felis catus TRG locus contains 30 genes: 12 TRGV, 12 TRGJ and 6 TRGC, the TRB locus contains 48 genes: 33 TRBV, 2 TRBD, 11 TRBJ, 2 TRBC, the TRD locus contains 19 genes: 11 TRDV, 2 TRDD, 5 TRDJ, 1 TRDC, and the TRA locus contains 127 genes: 62 TRAV, 64 TRAJ, 1 TRAC. Functional feline V genes form monophyletic clades with their orthologs, and clustering of multimember subgroups frequently occurs in V genes located at the 5' end of TR loci. Recombination signal (RS) sequences of the heptamer and nonamer of functional V and J genes are highly conserved. Analysis of the TRG expressed repertoire showed preferential intra-cassette over inter-cassette rearrangements and dominant usage of the TRGV2-1 and TRGJ1-2 genes. The usage of TRBV genes showed minor bias but TRBJ genes of the second J-C-cluster were more commonly rearranged than TRBJ genes of the first cluster. The TRA/TRD V genes almost exclusively rearranged to J genes within their locus. The TRAV/TRAJ gene usage was relatively balanced while the TRD repertoire was dominated by TRDJ3. CONCLUSIONS: This is the first description of all TR loci in the cat. The genomic organization of feline TR loci was similar to that of previously described jawed vertebrates (gnathostomata) and is compatible with the birth-and-death model of evolution. The large-scale characterization of feline TR genes provides comprehensive baseline data on immune repertoires in healthy cats and will facilitate the development of improved reagents for the diagnosis of lymphoproliferative diseases in cats. In addition, these data might benefit studies using cats as a large animal model for human disease.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Internal Medicine 2 University Hospital Schleswig Holstein Kiel Germany
Department of Pathobiology Ontario Veterinary College University of Guelph Guelph Ontario Canada
See more in PubMed
Lefranc M-P, Lefranc G. The immunoglobulin factsbook. 1. London: Academic Press; 2001.
Lefranc M-P. Immunoglobulin and T cell receptor genes: IMGT((R)) and the birth and rise of Immunoinformatics. Front Immunol. 2014;5:22. doi: 10.3389/fimmu.2014.00022. PubMed DOI PMC
Murphy KWC. The generation of lymphocyte antigen receptors. In: Schanck D, editor. Janeway’s immunobiology. 9. New York: Garland Science, Taylor & Francis Group, LLC; 2017. pp. 173–212.
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol. 2004;4(2):123–132. doi: 10.1038/nri1292. PubMed DOI
Simon JS, Botero S, Simon SM. Sequencing the peripheral blood B and T cell repertoire - quantifying robustness and limitations. J Immunol Methods. 2018;463:137–147. doi: 10.1016/j.jim.2018.10.003. PubMed DOI PMC
Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–581. doi: 10.1038/302575a0. PubMed DOI
Rooney S, Chaudhuri J, Alt FW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev. 2004;200:115–131. doi: 10.1111/j.0105-2896.2004.00165.x. PubMed DOI
Lefranc M-P, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol. 2003;27(1):55–77. doi: 10.1016/S0145-305X(02)00039-3. PubMed DOI
Lefranc M-P, Lefranc G. IMGT® and 30 years of Immunoinformatics insight in antibody V and C domain structure and function. Antibodies. 2019;8(2):29. doi: 10.3390/antib8020029. PubMed DOI PMC
Martin Jolyon, Ponstingl Hannes, Lefranc Marie-Paule, Archer Joy, Sargan David, Bradley Allan. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics. 2017;70(4):223–236. doi: 10.1007/s00251-017-1028-0. PubMed DOI PMC
Moore PF, Woo JC, Vernau W, Kosten S, Graham PS. Characterization of feline T cell receptor gamma (TCRG) variable region genes for the molecular diagnosis of feline intestinal T cell lymphoma. Vet Immunol Immunopathol. 2005;106(3–4):167–178. doi: 10.1016/j.vetimm.2005.02.014. PubMed DOI
Weiss AT, Hecht W, Reinacher M. Feline T-cell receptor gamma V- and J-region sequences retrieved from the Trace archive and from Transcriptome analysis of cats. Vet Med Int. 2010;2010:953272. PubMed PMC
Weiss AT, Hecht W, Henrich M, Reinacher M. Characterization of C-, J- and V-region-genes of the feline T-cell receptor gamma. Vet Immunol Immunopathol. 2008;124(1–2):63–74. doi: 10.1016/j.vetimm.2008.03.006. PubMed DOI
Olivieria D, von Haeftenb B, Sanchez-Espinelb C, Gambon-Deza F. The immunologic V-gene repertoire in mammals. bioRxiv. 2014. 10.1101/002667.
Steiniger SC, Glanville J, Harris DW, Wilson TL, Ippolito GC, Dunham SA. Comparative analysis of the feline immunoglobulin repertoire. Biologicals. 2017;46:81–87. doi: 10.1016/j.biologicals.2017.01.004. PubMed DOI
Fromont E, Artois M, Langlais M, Courchamp F, Pontier D. Modelling the feline leukemia virus (FeLV) in natural populations of cats (Felis catus) Theor Popul Biol. 1997;52(1):60–70. doi: 10.1006/tpbi.1997.1320. PubMed DOI
Yamamoto JK, Sanou MP, Abbott JR, Coleman JK. Feline immunodeficiency virus model for designing HIV/AIDS vaccines. Curr HIV Res. 2010;8(1):14–25. doi: 10.2174/157016210790416361. PubMed DOI PMC
O'Brien SJ, Menotti-Raymond M, Murphy WJ, Yuhki N. The feline genome project. Annu Rev Genet. 2002;36:657–686. doi: 10.1146/annurev.genet.36.060602.145553. PubMed DOI
Lott PC, Korf I. StochHMM: a flexible hidden Markov model tool and C++ library. Bioinformatics. 2014;30(11):1625–1626. doi: 10.1093/bioinformatics/btu057. PubMed DOI PMC
Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000;18:975–1026. doi: 10.1146/annurev.immunol.18.1.975. PubMed DOI
Massari S, Bellahcene F, Vaccarelli G, Carelli G, Mineccia M, Lefranc M-P, Antonacci R, Ciccarese S. The deduced structure of the T cell receptor gamma locus in Canis lupus familiaris. Mol Immunol. 2009;46(13):2728–2736. doi: 10.1016/j.molimm.2009.05.008. PubMed DOI
Mineccia M, Massari S, Linguiti G, Ceci L, Ciccarese S, Antonacci R. New insight into the genomic structure of dog T cell receptor beta (TRB) locus inferred from expression analysis. Dev Comp Immunol. 2012;37(2):279–293. doi: 10.1016/j.dci.2012.03.010. PubMed DOI
Antonacci R, Giannico F, Ciccarese S, Massari S. Genomic characteristics of the T cell receptor (TRB) locus in the rabbit (Oryctolagus cuniculus) revealed by comparative and phylogenetic analyses. Immunogenetics. 2014;66(4):255–266. doi: 10.1007/s00251-013-0754-1. PubMed DOI
Massari S, Ciccarese S, Antonacci R. Structural and comparative analysis of the T cell receptor gamma (TRG) locus in Oryctolagus cuniculus. Immunogenetics. 2012;64(10):773–779. doi: 10.1007/s00251-012-0634-0. PubMed DOI
Vaccarelli G, Miccoli MC, Antonacci R, Pesole G, Ciccarese S. Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics. 2008;9:81. doi: 10.1186/1471-2164-9-81. PubMed DOI PMC
Lefranc MP, Chuchana P, Dariavach P, Nguyen C, Huck S, Brockly F, Jordan B, Lefranc G. Molecular mapping of the human T cell receptor gamma (TRG) genes and linkage of the variable and constant regions. Eur J Immunol. 1989;19(6):989–994. doi: 10.1002/eji.1830190606. PubMed DOI
IMGT repertoire (IG and TR). Locus representations [http://www.imgt.org/IMGTrepertoire/LocusGenes].
Boutin L, Scotet E. Towards deciphering the hidden mechanisms that contribute to the antigenic activation process of human Vgamma9Vdelta2 T cells. Front Immunol. 2018;9:828. doi: 10.3389/fimmu.2018.00828. PubMed DOI PMC
Zhang XM, Tonnelle C, Lefranc M-P, Huck S. T cell receptor gamma cDNA in human fetal liver and thymus: variable regions of gamma chains are restricted to V gamma I or V9, due to the absence of splicing of the V10 and V11 leader intron. Eur J Immunol. 1994;24(3):571–578. doi: 10.1002/eji.1830240312. PubMed DOI
Huck S, Lefranc M-P. Rearrangements to the JP1, JP and JP2 segments in the human T-cell rearranging gamma gene (TRG gamma) locus. FEBS Lett. 1987;224(2):291–296. doi: 10.1016/0014-5793(87)80472-6. PubMed DOI
Antonacci R, Di Tommaso S, Lanave C, Cribiu EP, Ciccarese S, Massari S. Organization, structure and evolution of 41kb of genomic DNA spanning the D-J-C region of the sheep TRB locus. Mol Immunol. 2008;45(2):493–509. doi: 10.1016/j.molimm.2007.05.023. PubMed DOI
Eguchi-Ogawa T, Toki D, Uenishi H. Genomic structure of the whole D-J-C clusters and the upstream region coding V segments of the TRB locus in pig. Dev Comp Immunol. 2009;33(10):1111–1119. doi: 10.1016/j.dci.2009.06.006. PubMed DOI
Identification of expressed V, D, J, and C genes in the TRB locus of the ferret. In: Gerritsen B. Sequencing, analyzing, and modeling small samples from large T cell repertoires. [http://www.imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=locus&species=ferret&group=TRB].
Toyonaga B, Yoshikai Y, Vadasz V, Chin B, Mak TW. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1985;82(24):8624–8628. doi: 10.1073/pnas.82.24.8624. PubMed DOI PMC
Folch G, Lefranc M-P. The human T cell receptor beta variable (TRBV) genes. Exp Clin Immunogenet. 2000;17(1):42–54. doi: 10.1159/000019123. PubMed DOI
Butler JE, Wertz N, Sun J, Sacco RE. Comparison of the expressed porcine Vbeta and Jbeta repertoire of thymocytes and peripheral T cells. Immunology. 2005;114(2):184–193. doi: 10.1111/j.1365-2567.2004.02072.x. PubMed DOI PMC
Migalska M, Sebastian A, Radwan J. Profiling of the TCRbeta repertoire in non-model species using high-throughput sequencing. Sci Rep. 2018;8(1):11613. doi: 10.1038/s41598-018-30037-0. PubMed DOI PMC
Reinhardt C, Melms A. Skewed TCRV beta repertoire in human thymus persists after thymic emigration: influence of genomic imposition, thymic maturation and environmental challenge on human TCRV beta usage in vivo. Immunobiology. 1998;199(1):74–86. doi: 10.1016/S0171-2985(98)80065-X. PubMed DOI
Jores R, Meo T. Few V gene segments dominate the T cell receptor beta-chain repertoire of the human thymus. J Immunol. 1993;151(11):6110–6122. PubMed
Glusman G, Rowen L, Lee I, Boysen C, Roach JC, Smit AF, Wang K, Koop BF, Hood L. Comparative genomics of the human and mouse T cell receptor loci. Immunity. 2001;15(3):337–349. doi: 10.1016/S1074-7613(01)00200-X. PubMed DOI
van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–2317. doi: 10.1038/sj.leu.2403202. PubMed DOI
Verschuren MC, Wolvers-Tettero IL, Breit TM, van Dongen JJ. T-cell receptor V delta-J alpha rearrangements in human thymocytes: the role of V delta-J alpha rearrangements in T-cell receptor-delta gene deletion. Immunology. 1998;93(2):208–212. doi: 10.1046/j.1365-2567.1998.00417.x. PubMed DOI PMC
Kabelitz D, Wesch D, Hinz T. Gamma delta T cells, their T cell receptor usage and role in human diseases. Springer Semin Immunopathol. 1999;21(1):55–75. PubMed
Hesse JE, Lieber MR, Mizuuchi K, Gellert M. V(D) J recombination: a functional definition of the joining signals. Genes Dev. 1989;3(7):1053–1061. doi: 10.1101/gad.3.7.1053. PubMed DOI
Giudicelli V, Chaume D, Lefranc MP. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005;33(Database issue):D256–D261. doi: 10.1093/nar/gki010. PubMed DOI PMC
Akamatsu Y, Tsurushita N, Nagawa F, Matsuoka M, Okazaki K, Imai M, Sakano H. Essential residues in V(D) J recombination signals. J Immunol. 1994;153(10):4520–4529. PubMed
Lefranc M-P. IMGT (ImMunoGeneTics) locus on focus. A new section of experimental and clinical Immunogenetics. Exp Clin Immunogenet. 1998;15(1):1–7. doi: 10.1159/000019049. PubMed DOI
Bonneville M, O'Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–478. doi: 10.1038/nri2781. PubMed DOI
Yu X, Almeida JR, Darko S, van der Burg M, DeRavin SS, Malech H, Gennery A, Chinn I, Markert ML, Douek DC, et al. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. J Allergy Clin Immunol. 2014;133(4):1109–1115. doi: 10.1016/j.jaci.2013.11.018. PubMed DOI PMC
IMGT repertoire (IG and TR). Gene tables [http://www.imgt.org/IMGTrepertoire/LocusGenes].
Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, Amariglio N, Weisz B, Notarangelo LD, Somech R. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med. 2015;7(276):276ra225. doi: 10.1126/scitranslmed.aaa0072. PubMed DOI
Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW. Alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity. 1997;6(1):1–11. doi: 10.1016/S1074-7613(00)80237-X. PubMed DOI
Gil A, Yassai MB, Naumov YN, Selin LK. Narrowing of human influenza a virus-specific T cell receptor alpha and beta repertoires with increasing age. J Virol. 2015;89(8):4102–4116. doi: 10.1128/JVI.03020-14. PubMed DOI PMC
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Web Server issue):W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC
Hwang MH, Darzentas N, Bienzle D, Moore PF, Morrison J, Keller SM. Characterization of the canine immunoglobulin heavy chain repertoire by next generation sequencing. Vet Immunol Immunopathol. 2018;202:181–190. doi: 10.1016/j.vetimm.2018.07.002. PubMed DOI
Lefranc M-P. Nomenclature of the human T cell receptor genes. Curr Protoc Immunol. 2001;Appendix 1:Appendix 1O. PubMed
IMGT-NC reports [http://www.imgt.org/IMGTindex/IMGT-NC.php].
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
16S metagenomic sequencing library preparation [https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf].
Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putintseva EV, Lebedev YB, Chudakov DM. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol. 2013;4:456. doi: 10.3389/fimmu.2013.00456. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bystry V, Reigl T, Krejci A, Demko M, Hanakova B, Grioni A, Knecht H, Schlitt M, Dreger P, Sellner L, et al. ARResT/interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics. 2017;33(3):435–437. PubMed
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC