Parvalbumin: A Major Fish Allergen and a Forensically Relevant Marker

. 2023 Jan 14 ; 14 (1) : . [epub] 20230114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36672964

Parvalbumins (PVALBs) are low molecular weight calcium-binding proteins. In addition to their role in many biological processes, PVALBs play an important role in regulating Ca2+ switching in muscles with fast-twitch fibres in addition to their role in many biological processes. The PVALB gene family is divided into two gene types, alpha (α) and beta (β), with the β gene further divided into two gene types, beta1 (β1) and beta2 (β2), carrying traces of whole genome duplication. A large variety of commonly consumed fish species contain PVALB proteins which are known to cause fish allergies. More than 95% of all fish-induced food allergies are caused by PVALB proteins. The authentication of fish species has become increasingly important as the seafood industry continues to grow and the growth brings with it many cases of food fraud. Since the PVALB gene plays an important role in the initiation of allergic reactions, it has been used for decades to develop alternate assays for fish identification. A brief review of the significance of the fish PVALB genes is presented in this article, which covers evolutionary diversity, allergic properties, and potential use as a forensic marker.

Zobrazit více v PubMed

Arif S.H., Jabeen M., Hasnain A. Biochemical characterisation and thermostable capacity of parvalbumins: The major fish-food allergens. J. Food. Biochem. 2007;31:121–137. doi: 10.1111/j.1745-4514.2007.00104.x. DOI

Mukherjee S., Bartoš O., Zdeňková K., Hanák P., Horká P., Musilova Z. Evolution of the Parvalbumin Genes in Teleost Fishes after the Whole-Genome Duplication. Fishes. 2021;6:70. doi: 10.3390/fishes6040070. DOI

Deuticke H.J. Űber die Sedimentationskonstante von Muskelproteinen. Physiol. Chem. 1934;224:216–228. doi: 10.1515/bchm2.1934.224.5-6.216. DOI

Henrotte J.G. A crystalline constituent from myogen of carp muscles. Nature. 1952;169:968–969. doi: 10.1038/169968b0. PubMed DOI

Pechère J.F. Muscular parvalbumins as homologous proteins. Comp. Biochem. Physiol. 1968;24:289–295. doi: 10.1016/0010-406X(68)90978-X. PubMed DOI

Pechère J.F., Capony J., Ryden L. The primary structure of the major parvalbumin from hake muscle. Eur. J. Biochem. 1971;23:421–428. doi: 10.1111/j.1432-1033.1971.tb01636.x. PubMed DOI

Nockolds C.E., Kretsinger R.H., Coffee C.J., Bradshaw R.A. Structure of a calcium binding carp myogen. Proc. Natl. Acad. Sci. USA. 1972;69:581–584. doi: 10.1073/pnas.69.3.581. PubMed DOI PMC

Arif S.H. A Ca2+-binding protein with numerous roles and uses: Parvalbumin in molecular biology and physiology. BioEssays. 2009;31:410–421. doi: 10.1002/bies.200800170. PubMed DOI

Heizmann C.W. Ca2+-Binding proteins of the EF-hand superfamily: Diagnostic and prognostic biomarkers and novel therapeutic targets. Methods Mol. Biol. 2019;1929:157–186. PubMed

Nogueira L., Gilmore N.K., Hogan M.C. Role of parvalbumin in fatigue-induced changes in force and cytosolic calcium transients in intact single mouse myofibers. J. Appl. Physiol. 2022;132:1041–1053. doi: 10.1152/japplphysiol.00861.2021. PubMed DOI PMC

Ge M., Chen S., Huang Y., Chen W., He L., Zhang Y. Role of calcium homeostasis in Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 2022;18:487. doi: 10.2147/NDT.S350939. PubMed DOI PMC

Berchtold M.W., Brinkmeier H., Műntener M. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity and disease. Physiol. Rev. 2000;80:1215–1265. doi: 10.1152/physrev.2000.80.3.1215. PubMed DOI

Gillis J.M. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochem. Biophys. Acta. 1985;811:97–145. doi: 10.1016/0304-4173(85)90016-3. PubMed DOI

Coughlin D.J. Aerobic muscle functions during steady swimming in fishes. Fish Fish. 2002;3:63–78. doi: 10.1046/j.1467-2979.2002.00069.x. DOI

Celio M.R., Heizmann C.W. Calcium-binding protein parvalbumin as a neuronal marker. Nature. 1981;293:300–302. doi: 10.1038/293300a0. PubMed DOI

Radauer C., Bublin M., Wagner S., Mari A., Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 2006;121:847–852. doi: 10.1016/j.jaci.2008.01.025. PubMed DOI

Lopata A.L., Jeebhay M.F. Airborne seafood allergens as a cause of occupational allergy and asthma. Curr. Allergy Asthma Rep. 2013;13:288–297. doi: 10.1007/s11882-013-0347-y. PubMed DOI

Saptarshi S.R., Sharp M.F., Kamath S.D., Lopata A.L. Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing. Food Chem. 2014;148:321–328. doi: 10.1016/j.foodchem.2013.10.035. PubMed DOI

Griesmeier U., Vázquez-Cortés S., Bublin M., Radauer C., Ma Y., Briza P., Fernández-Rivas M., Breiteneder H. Expression levels of parvalbumins determine allergenicity of fish species. Allergy. 2010;65:191–198. doi: 10.1111/j.1398-9995.2009.02162.x. PubMed DOI

Kubota H., Kobayashi A., Kobayashi Y., Shiomi K., Hamada-Sato N. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chem. 2016;206:78–84. doi: 10.1016/j.foodchem.2016.03.043. PubMed DOI

Pérez-Tavarez R., Moreno H.M., Borderias J., Loli-Ausejo D., Pedrosa M., Hurtado J.L., Rodriguez-Pérez R., Gasset M. Fish muscle processing into seafood products reduces β-parvalbumin allergenicity. Food Chem. 2021;364:130308. doi: 10.1016/j.foodchem.2021.130308. PubMed DOI

Abdullah A., Rehbein H. The differentiation of tuna (family: Scombridae) products through the PCR-based analysis of the cytochrome b gene and parvalbumin introns. J. Sci. Food Agric. 2016;96:456–464. doi: 10.1002/jsfa.7111. PubMed DOI

Akhatova D., Laknerova I., Zdenkova K., Olafsdottir G., Magnusdottir S., Piknova L., Kyrova V., Lerch Z., Hanak P. International interlaboratory study on TaqMan real-time polymerase chain reaction authentication of black seabream (Spondyliosoma cantharus) J. Food Nutr. Res. 2018;57:27–37.

Hanak P., Laknerova I., Svatora M. Second intron in the protein-coding region of the fish parvalbumin gene-a promising platform for polymerase chain reaction-based discrimination of fish meat of various species. J. Food Nutr. Res. 2012;51:81–88.

Sun M., Liang C., Gao H., Lin C., Deng M. Detection of parvalbumin, a common fish allergen gene in food, by real-time polymerase chain reaction. J. AOAC Int. 2009;92:234–240. doi: 10.1093/jaoac/92.1.234. PubMed DOI

Ross C., Tilghman R.W., Hartmann J.X., Mari F. Distribution of parvalbumin isotypes in adult snook and their potential applications as species-specific biomarkers. J. Fish. Biol. 1997;51:561–572. doi: 10.1111/j.1095-8649.1997.tb01512.x. DOI

Huriaux F., Vandewalle P., Focant B. Immunological study of muscle parvalbumin isotypes in three African catfish during development. Comp. Biochem. Physiol. 2002;132B:579–584. doi: 10.1016/S1096-4959(02)00071-4. PubMed DOI

Kuehn A., Swoboda I., Arumugam K., Hilger C., Hentges F. Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens. Front. Immunol. 2014;5:179. doi: 10.3389/fimmu.2014.00179. PubMed DOI PMC

Sharp M.F., Lopata A.L. Fish allergy: In review. Clin. Rev. Allergy Immunol. 2014;46:258–271. doi: 10.1007/s12016-013-8363-1. PubMed DOI

Goodman M., Pechére J.F. The evolution of muscular parvalbumins investigated by the maximum parsimony method. J. Mol. Evol. 1977;9:131–158. doi: 10.1007/BF01732745. PubMed DOI

Leung N.Y., Wai C.Y., Shu S., Wang J., Kenny T.P., Chu K.H., Leung P.S. Current immunological and molecular biological perspectives on seafood allergy: A comprehensive review. Clin. Rev. Allergy Immunol. 2014;46:180–197. doi: 10.1007/s12016-012-8336-9. PubMed DOI

Rodenbaugh D.W., Wang W., Davis J., Edwards T., Potter J.D., Metzger J.M. Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2007;293:1705–1713. doi: 10.1152/ajpheart.00232.2007. PubMed DOI

Permyakov E.A., Uversky V.N. What Is Parvalbumin for? Biomolecules. 2022;12:656. doi: 10.3390/biom12050656. PubMed DOI PMC

Haiech J., Moreau M., Leclerc C., Kilhoffer M.C. Facts and conjectures on calmodulin and its cousin proteins, parvalbumin and troponin C. Biochim. Biophys. Acta-Mol. Cell Res. 2019;1866:1046–1053. doi: 10.1016/j.bbamcr.2019.01.014. PubMed DOI

Cates M.S., Berry M.B., Ho E.L., Li Q., Potter J.D., Phillips G.N., Jr. Metal-ion affinity and specificity in EF-hand proteins: Coordination geometry and domain plasticity in parvalbumin. Structure. 1999;7:1269–1278. doi: 10.1016/S0969-2126(00)80060-X. PubMed DOI

Biomatters, Geneious version 2022.2. [(accessed on 6 December 2022)]. Available online: https://www.geneious.com.

Cox A.L., Eigenmann P.A., Sicherer S.H. Clinical relevance of cross-reactivity in food allergy. J. Allergy Clin. Immunol. Pract. 2021;9:82–99. doi: 10.1016/j.jaip.2020.09.030. PubMed DOI

Meyer A., Van de Peer Y. From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD) Bioessays. 2005;27:937–945. doi: 10.1002/bies.20293. PubMed DOI

Modrell M.S., Lyne M., Carr A.R., Zakon H.H., Buckley D., Campbell A.S., Davis M.C., Micklem G., Baker C.V. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife. 2017;6:e24197. doi: 10.7554/eLife.24197. PubMed DOI PMC

Fagerberg L., Hallström B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Perez-Gordo M., Lin J., Bardina L., Pastor-Vargas C., Cases B., Vivanco F., Cuesta-Herranz J., Sampson H.A. Epitope mapping of Atlantic salmon major allergen by peptide microarray immunoassay. Int. Arch. Allergy Immunol. 2012;157:31–40. doi: 10.1159/000324677. PubMed DOI

Sicherer S.H., Sampson H.A. Food allergy. J. Allergy Clin. Immunol. 2006;117:470–475. doi: 10.1016/j.jaci.2005.05.048. PubMed DOI

Bannon G.A. What makes a food protein an allergen? Curr. Allergy Asthma Rep. 2004;4:43–46. doi: 10.1007/s11882-004-0042-0. PubMed DOI

Moreno F.J. Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomed. Pharmacother. 2007;61:50–60. doi: 10.1016/j.biopha.2006.10.005. PubMed DOI

Fu L., Wang C., Zhu Y., Wang Y. Seafood allergy: Occurrence, mechanisms and measures. Trends Food Sci. Technol. 2019;88:80–92. doi: 10.1016/j.tifs.2019.03.025. DOI

Failler P., Van der Walle G., Lecrivain N., Himbes A., Lewins R. Future Prospects for Fish and Fishery Products, European Overview. FAO; Rome, Italy: 2007. 204p FAO Fisheries Circular No. 972/4, Part 1.

Beale J.E., Jeebhay M.F., Lopata A.L. Characterisation of purified parvalbumin from five fish species and nucleotide sequencing of this major allergen from Pacific pilchard, Sardinops sagax. Mol. Immunol. 2009;46:2985–2993. doi: 10.1016/j.molimm.2009.06.018. PubMed DOI

Hamada Y., Tanaka H., Ishizaki S., Ishida M., Nagashima Y., Shiomi K. Purification, reactivity with IgE and cDNA cloning of parvalbumin as the major allergen of mackerels. Food Chem. Toxicol. 2003;41:1149–1156. doi: 10.1016/S0278-6915(03)00074-7. PubMed DOI

Helbling A., Heydet R., McCants M.L., Musmand J.J., El-Dahr J., Lehrer S.G. Fish allergy: Is cross-reactivity among fish species relevant? Double-blind placebo-controlled food challenge studies or fish-allergic patients. Ann. Allergy Asthma Immunol. 1999;83:517–523. doi: 10.1016/S1081-1206(10)62862-1. PubMed DOI

Lim D.L.C., Neo K.H., Yi F.C., Chua K.Y., Goh D.L.M., Shek L.P.C., Giam Y.C., Van Bever H.P., Lee B.W. Parvalbumin–the major tropical fish allergen. Pediatr. Allergy Immunol. 2008;19:399–407. doi: 10.1111/j.1399-3038.2007.00674.x. PubMed DOI

Borrego J.T., Cuevas J.M., Garcia J.T. Cross reactivity between fish and shellfish. Allergol. Immunopathol. 2003;31:146–151. PubMed

Madsen C.B., Hattersley S., Allen K.J., Beyer K., Chan C.H., Godefroy S.B., Hodgson R., Mills E.N., Muñoz-Furlong A., Schnadt S., et al. Can we define a tolerable level of risk in food allergy? Report from a EuroPrevall/UK food standards agency workshop. Clin. Exp. Allergy. 2012;42:30–37. doi: 10.1111/j.1365-2222.2011.03868.x. PubMed DOI

Ruethers T., Taki A.C., Johnston E.B., Nugraha R., Le T.T., Kalic T., McLean T.R., Kamath S.D., Lopata A.L. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol. Immunol. 2018;100:28–57. doi: 10.1016/j.molimm.2018.04.008. PubMed DOI

Van Hengel A.J. Introduction. In: Nollet L.M.L., van Hengel A.J., editors. Food Allergens: Analysis Instrumentation and Methods. CRC Press; Boca Raton, FL, USA: 2011. pp. 1–11.

Bernhisel-Broadbent J., Strause D., Sampson H.A. Fish hypersensitivity. II. Clinical relevance of altered fish allergenicity caused by various preparation methods. J. Allergy Clin. Immunol. 1992;90:622–629. doi: 10.1016/0091-6749(92)90135-O. PubMed DOI

Pascual C.Y., Reche M., Fiandor A., Valbuena T., Cuevas T., Martin-Esteban M.M. Fish allergy in childhood. Pediatr. Allergy Immunol. 2008;19:573–579. doi: 10.1111/j.1399-3038.2008.00822.x. PubMed DOI

Lee P.W., Nordlee J.A., Koppelman S.J., Baumert J.L., Taylor S.L. Measuring parvalbumin levels in fish muscle tissue: Relevance of muscle locations and storage conditions. Food Chem. 2012;135:502–507. doi: 10.1016/j.foodchem.2012.05.030. PubMed DOI

Costa J., Ansari P., Mafra I., Oliveira M.B.P.P., Baumgartner S. Assessing hazelnut allergens by protein- and DNA-based approaches: LC-MS/MS, ELISA and real-time PCR. Anal. Bioanal. Chem. 2014;406:2581–2590. doi: 10.1007/s00216-014-7679-x. PubMed DOI

European Commission Directive 2007/68/EC of 27 November 2007 amending Annex IIIa to Directive 2000/13/EC of the European Parliament and of the Council as regards certain food ingredients. Off. J. Eur. Union. 2007;310:11–14.

Mari A., Scala E., Palazzo P., Ridolfi S., Zennaro D., Carabella G. Bioinformatics applied to allergy: Allergen databases, from collecting sequence information to data integration. The allergome platform as a model. Cell Immunol. 2006;244:97–100. doi: 10.1016/j.cellimm.2007.02.012. PubMed DOI

Swoboda I., Balic N., Klug C., Focke M., Weber M., Spitzauer S., Neubauer A., Quirce S., Douladiris N., Papadopoulos N.G., et al. A general strategy for the generation of hypoallergenic molecules for the immunotherapy of fish allergy. J. Allergy Clin. Immunol. 2013;132:979–981. doi: 10.1016/j.jaci.2013.04.027. PubMed DOI

Leung N.Y.H., Leung A.S.Y., Xu K.J.Y., Wai C.Y.Y., Lam C.Y., Wong G.W.K., Leung T.F. Molecular and immunological characterization of grass carp (Ctenopharyngodon idella) parvalbumin Cten i 1: A major fish allergen in Hong Kong. Pediatr. Allergy Immunol. 2020;31:792–804. doi: 10.1111/pai.13259. PubMed DOI

Bugajska-Schretter A., Grote M., Vangelista L., Valent P., Sperr W.R., Rumpold H., Pastore A., Reichelt R., Valenta R., Spitzauer S. Purification, biochemical, and immunological characterisation of a major food allergen: Different immunoglobulin E recognition of the apo-and calcium-bound forms of carp parvalbumin. Gut. 2000;46:661–669. doi: 10.1136/gut.46.5.661. PubMed DOI PMC

Bugajska-Schretter A., Elfman L., Fuchs T., Kapiotis S., Rumpold H., Valenta R., Spitzauer S. Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. J. Allergy Clin. Immunol. 1998;101:67–74. doi: 10.1016/S0091-6749(98)70195-2. PubMed DOI

Van Do T., Hordvik I., Endresen C., Elsayed S. The major allergen (parvalbumin) of codfish is encoded by at least two isotypic genes: cDNA cloning, expression and antibody binding of the recombinant allergens. Mol. Immunol. 2003;39:595–602. doi: 10.1016/S0161-5890(02)00200-6. PubMed DOI

Sharp M.F., Kamath S.D., Koeberl M., Jerry D.R., O’Hehir R.E., Campbell D.E., Lopata A.L. Differential IgE binding to isoallergens from Asian seabass (Lates calcarifer) in children and adults. Mol. Immunol. 2014;62:77–85. doi: 10.1016/j.molimm.2014.05.010. PubMed DOI

Kondo Y., Ahn J., Komatsubara R., Terada A., Yasuda T., Tsuge I., Urisu A. Comparison of allergenic properties of salmon (Oncorhynchus nerka) between landlocked and anadromous species. Allergol. Int. 2009;58:295–299. doi: 10.2332/allergolint.08-OA-0064. PubMed DOI

Ruethers T., Taki A.C., Karnaneedi S., Nie S., Kalic T., Dai D., Daduang S., Leeming M., Williamson N.A., Breiteneder H., et al. Expanding the allergen repertoire of salmon and catfish. Allergy. 2021;76:1443–1453. doi: 10.1111/all.14574. PubMed DOI

Ruethers T., Raith M., Sharp M.F., Koeberl M., Stephen J.N., Nugraha R., Le T.T., Quirce S., Nguyen H.X., Kamath S.D., et al. Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin. Exp. Allergy. 2018;48:452–463. doi: 10.1111/cea.13069. PubMed DOI

Lindstrøm C.D.V., Van Do T., Hordvik I., Endresen C., Elsayed S. Cloning of two distinct cDNAs encoding parvalbumin, the major allergen of Atlantic salmon (Salmo salar) Scand. J. Immunol. 1996;44:335–344. doi: 10.1046/j.1365-3083.1996.d01-314.x. PubMed DOI

Gajewski K.G., Hsieh Y.H. Monoclonal antibody specific to a major fish allergen: Parvalbumin. J. Food Prot. 2009;72:818–825. doi: 10.4315/0362-028X-72.4.818. PubMed DOI

Kuehn A. Allergen Nomenclature. 2021. [(accessed on 17 October 2022)]. Available online: http://allergen.org/viewallergen.php?aid=655.

Van Do T., Elsayed S., Florvaag E., Hordvik I., Endresen C. Allergy to fish parvalbumins: Studies on the cross-reactivity of allergens from 9 commonly consumed fish. J. Allergy Clin. Immunol. 2005;116:1314–1320. doi: 10.1016/j.jaci.2005.07.033. PubMed DOI

Ruethers T., Nugraha R., Taki A.C., O’Malley A., Karnaneedi S., Zhang S., Kapingidza A.B., Mehr S., Kamath S.D., Chruszcz M., et al. The first reptilian allergen and major allergen for fish-allergic patients: Crocodile β-parvalbumin. Pediatr. Allergy Immunol. 2022;33:e13781. doi: 10.1111/pai.13781. PubMed DOI PMC

Kuehn A., Lehners C., Hilger C., Hentges F. Food allergy to chicken meat with IgE reactivity to muscle α-parvalbumin. Allergy. 2009;64:1557–1558. doi: 10.1111/j.1398-9995.2009.02094.x. PubMed DOI

Kuehn A., Codreanu-Morel F., Lehners-Weber C., Doyen V., Gomez-André S.A., Bienvenu F., Van Hage M., Perotin J.M., Silcret-Grieu S. Cross-reactivity to fish and chicken meat–a new clinical syndrome. Allergy. 2016;71:1772–1781. doi: 10.1111/all.12968. PubMed DOI

Hilger C., Grigioni F., Thill L., Mertens L., Hentges F. Severe IgE-mediated anaphylaxis following consumption of fried frog legs: Definition of α-parvalbumin as the allergen in cause. Allergy. 2002;57:1053–1058. doi: 10.1034/j.1398-9995.2002.23677.x. PubMed DOI

Hubalkova Z., Kralik P., Tremlova B., Rencova E. Methods of gadoid fish species identification in food and their economic impact in the Czech Republic: A review. Vet. Med. 2007;52:273. doi: 10.17221/2044-VETMED. DOI

Kim H., Kumar K.S., Hwang S.Y., Kang B.C., Moon H.B., Shin K.H. Utility of Stable Isotope and Cytochrome Oxidase I Gene Sequencing Analyses in Inferring Origin and Authentication of Hairtail Fish and Shrimp. J. Agric. Food Chem. 2015;63:5548–5556. doi: 10.1021/acs.jafc.5b01469. PubMed DOI

Schmidhuber J., Pound J., Qiao B. COVID-19: Channels of Transmission to Food and Agriculture. Food and Agriculture Organization of the United Nations; Rome, Italy: 2020.

Whitworth J. High Risk Firms May Miss an Inspection Due to COVID-19. 2020. [(accessed on 15 October 2022)]. Available online: https://www.foodsafetynews.com/2020/12/high-risk-firms-may-miss-an-inspection-due-to-covid-19/

Rehbein H., Kundiger R., Yman I.M., Ferm M., Etienne M., Jerome M., Craig A., Mackie I., Jessen F., Martinez I., et al. Species identification of cooked fish by urea isoelec-tric focusing and sodium dodecylsulfate polyacryla-mide gel electrophoresis: A collaborative study. Food Chem. 1999;67:333–339. doi: 10.1016/S0308-8146(99)00175-2. DOI

Piñeiro C., Sotelo C.G., Medina I., Gallardo J.M., Pérez-Martín R.I. Reversed-phase HPLC as a method for the identification of gadoid fish species. Z. Lebensm. Unters. Forsch. 1997;204:411–416. doi: 10.1007/s002170050103. DOI

Céspedes A., García T., Carrera E., González I., Fernández A., Asensio L., Hernández P.E., Martín R. Indirect enzyme-linked immunosorbent assay for the identification of sole (Solea solea), European plaice (Pleuronectes platessa), floun-der (Platichthys flesus), and Greenland hali-but (Reinhardtius hippoglossoides) J. Food Prot. 1999;62:1178–1182. doi: 10.4315/0362-028X-62.10.1178. PubMed DOI

Hubalkova Z., Kralik P., Kasalova J., Rencova E. Identification of gadoid species in fish meat by polymerase chain reaction (PCR) on genomic DNA. J. Agric. Food Chem. 2008;56:3454–3459. doi: 10.1021/jf703684w. PubMed DOI

Kochzius M., Seidel C., Antoniou A., Botla S.K., Campo D., Cariani A., Vazquez E.G., Hauschild J., Hervet C., Hjörleifsdottir S., et al. Identifying fishes through DNA barcodes and microarrays. PLoS One. 2010;5:e12620. doi: 10.1371/journal.pone.0012620. PubMed DOI PMC

Hulley E.N., Tharmalingam S., Zarnke A., Boreham D.R. Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species. PLoS One. 2019;14:e0210165. doi: 10.1371/journal.pone.0210165. PubMed DOI PMC

Rehbein H. Differentiation of fish species by PCR-based DNA analysis of nuclear genes. Eur. Food Res. Technol. 2013;236:979–990. doi: 10.1007/s00217-013-1961-6. DOI

Jiang D., Jiang H., Ji J., Sun X., Qian H., Zhang G., Tang L. Mast-cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin. J. Agric. Food Chem. 2014;62:6473–6480. doi: 10.1021/jf501382t. PubMed DOI

Hua Z., Yu T., Liu D., Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021;179:113076. doi: 10.1016/j.bios.2021.113076. PubMed DOI

Li J., Wang H., Cheng J.H. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications. Crit. Rev. Food Sci. Nutr. 2023;63:178–191. doi: 10.1080/10408398.2021.1944977. PubMed DOI

Piñeiro C., Vázquez J., Marina A.I., Barros-Velázquez J., Gallardo J.M. Characterization and partial sequencing of species-specific sarcoplasmic polypeptides from commercial hake species by mass spectrometry following two-dimensional electrophoresis. Electrophoresis. 2001;22:1545–1552. doi: 10.1002/1522-2683(200105)22:8<1545::AID-ELPS1545>3.0.CO;2-5. PubMed DOI

Elsayed S., Bennich H. The primary structure of allergen M from cod. Scand. J. Immunol. 1975;4:203–208. doi: 10.1111/j.1365-3083.1975.tb02618.x. PubMed DOI

Carrera M., Canas B., Vázquez J., Gallardo J.M. Extensive de novo sequencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR− MS, and selected MS/MS Ion monitoring. J. Proteome Res. 2010;9:4393–4406. doi: 10.1021/pr100163e. PubMed DOI

Rehbein H., Kundiger R., Pineiro C., Perez-Martin R.I. Fish muscle parvalbumins as marker proteins for native and urea isoelectric focusing. Electrophoresis. 2000;21:1458–1463. doi: 10.1002/(SICI)1522-2683(20000501)21:8<1458::AID-ELPS1458>3.0.CO;2-T. PubMed DOI

Etienne M., Jerome M., Fleurence J., Rehbein H., Kundiger R., Malmheden Yman I., Ferm M., Craig A., Mackie I., Jessen F., et al. A standardised method of identification of raw and heat-processed fish by urea isoelectric focusing: A collaborative study. Electrophoresis. 1999;20:1923–1933. doi: 10.1002/(SICI)1522-2683(19990701)20:10<1923::AID-ELPS1923>3.0.CO;2-J. PubMed DOI

Dobrovolov I., Ivanova P., Tsekov A. Genetic-biochemical identification of some sturgeons and their hybrids (Pisces, Acipenseridae) Verh. Int. Ver. Theor. Angew. Limnol. 2005;29:917–921. doi: 10.1080/03680770.2005.11902816. DOI

Rehbein H., Lopata A.L. Presence of parvalbumin in different tissues of three sturgeon species (Acipenser baeri, A. gueldenstaedtii, A. ruthenus) J. Appl. Ichthyol. 2011;27:219–225. doi: 10.1111/j.1439-0426.2010.01654.x. DOI

Rehbein H., Oliveira A. Alaskan flatfishes on the German market: Part 1: Identification by DNA and protein analytical methods. Eur. Food Res. Technol. 2012;234:245–251. doi: 10.1007/s00217-011-1629-z. DOI

Mazzeo M.F., Giulio B.D., Guerriero G., Ciarcia G., Malorni A., Russo G.L., Siciliano R.A. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 2008;56:11071–11076. doi: 10.1021/jf8021783. PubMed DOI

Carrera M., Cañas B., Gallardo J.M. Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J. Proteom. 2012;75:3211–3220. doi: 10.1016/j.jprot.2012.03.030. PubMed DOI

Li Z., Zhang Y., Pawar R., Wang G., Lin H. Development of an optimized protein chip for the detection of fish parvalbumin allergen. Curr. Anal. Chem. 2011;7:349–356. doi: 10.2174/157341111797183100. DOI

Mazzeo M.F., Siciliano R.A. Proteomics for the authentication of fish species. J. Proteom. 2016;147:119–124. doi: 10.1016/j.jprot.2016.03.007. PubMed DOI

Carrera M., Cañas B., Gallardo J.M. Proteomics for the assessment of quality and safety of fishery products. Food Res. Int. 2013;54:972–979. doi: 10.1016/j.foodres.2012.10.027. DOI

Carrera M., Cañas B., Piñeiro C., Vázquez J., Gallardo J.M. Identification of commercial hake and grenadier species by proteomic analysis of the parvalbumin fraction. Proteomics. 2006;6:5278–5287. doi: 10.1002/pmic.200500899. PubMed DOI

Siciliano R.A., d’Esposito D., Mazzeo M.F. Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry. Springer; Berlin/Heidelberg, Germany: 2016. Food authentication by MALDI MS: MALDI-TOF MS analysis of fish species; pp. 263–277.

Dong X., Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr. Rev. Food Sci. Food Saf. 2022;21:3540–3557. doi: 10.1111/1541-4337.12987. PubMed DOI

Xu J., Ye Y., Ji J., Sun J., Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit. Rev. Food Sci. Nutr. 2022;62:6887–6907. doi: 10.1080/10408398.2021.1907736. PubMed DOI

Rychert J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. J. Infect. Epidemiol. 2019;2 doi: 10.29245/2689-9981/2019/4.1142. DOI

Holzhauser T., Röder M. Handbook of Food Allergen Detection and Control. Elsevier; Amsterdam, The Netherlands: 2015. Polymerase chain reaction (PCR) methods for detecting allergens in foods; pp. 245–263.

Liu Z.J., Cordes J.F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 2004;238:1–37. doi: 10.1016/j.aquaculture.2004.05.027. DOI

Broeders S.R., De Keersmaecker S.C., Roosens N.H. How to deal with the upcoming challenges in GMO detection in food and feed. J. Biotechnol. Biomed. 2012;2012:402418. doi: 10.1155/2012/402418. PubMed DOI PMC

Eischeid A.C., Kim B.H., Kasko S.M. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens. J. Agric. Food Chem. 2013;61:5669–5674. doi: 10.1021/jf3031524. PubMed DOI

Herrero B., Vieites J.M., Espiñeira M. Development of an in-house fast real-time PCR method for detection of fish allergen in foods and comparison with a commercial kit. Food Chem. 2014;151:415–420. doi: 10.1016/j.foodchem.2013.11.042. PubMed DOI

Cline S.D. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta Gene Regul. Mech. BBA. 2012;1819:979–991. doi: 10.1016/j.bbagrm.2012.06.002. PubMed DOI PMC

Raupach M.J., Barco A., Steinke D., Beermann J., Laakmann S., Mohrbeck I., Neumann H., Kihara T.C., Pointner K., Radulovici A., et al. The application of DNA barcodes for the identification of marine crustaceans from the North Sea and adjacent regions. PLoS One. 2015;10:e0139421. doi: 10.1371/journal.pone.0139421. PubMed DOI PMC

Bremer J.R.A., Viñas J., Mejuto J., Ely B., Pla C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 2005;36:169–187. doi: 10.1016/j.ympev.2004.12.011. PubMed DOI

Buhay J.E. “COI-Like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 2009;29:96–110. doi: 10.1651/08-3020.1. DOI

Song H., Buhay J.E., Whiting M.F., Crandall K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA. 2008;105:13486–13491. doi: 10.1073/pnas.0803076105. PubMed DOI PMC

Mariani S., Bekkevold D. Stock Identification Methods. Academic Press; Cambridge, MA, USA: 2014. The nuclear genome: Neutral and adaptive markers in fisheries science; pp. 297–327.

Paracchini V., Petrillo M., Lievens A., Gallardo A.P., Martinsohn J.T., Hofherr J., Maquet A., Silva A.P., Kagkli D.M., Querci M., et al. Novel nuclear barcode regions for the identification of flatfish species. Food Control. 2017;79:297–308. doi: 10.1016/j.foodcont.2017.04.009. PubMed DOI PMC

Rehbein H., Kress G. Detection of short mRNA sequences in fishery products. Dtsch. Lebensm. Rundsch. 2005;101:333–337.

Rehbein H. Differentiation of hake species by RFLP-and SSCP-analysis of PCR amplified cytochrome b and parvalbumin sequences. Dtsch. Lebensm. Rundsch. 2007;103:511–517.

Rencova E., Kostelnikova D., Tremlova B. Detection of allergenic parvalbumin of Atlantic and Pacific herrings in fish products by PCR. Food Addit. Contam. Part A. 2013;30:1679–1683. doi: 10.1080/19440049.2013.817024. PubMed DOI

Ma Y., Griesmeier U., Susani M., Radauer C., Briza P., Erler A., Bublin M., Alessandri S., Himly M., Vàzquez-Cortés S., et al. Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Mol. Nutr. Food Res. 2008;52:S196–S207. doi: 10.1002/mnfr.200700284. PubMed DOI

Mukherjee S., Hanak P., Akhatova D., Musilova Z., Horka P., Lerch Z., Zdenkova K., Cermakova E. Simultaneous detection and quantification of two European anglerfishes by novel genomic primer. J. Food Compos. Anal. 2022;115:104992. doi: 10.1016/j.jfca.2022.104992. DOI

Sun L., Xu L., Huang Y., Lin H., Ahmed I., Li Z. Identification and comparison of allergenicity of native and recombinant fish major allergen parvalbumins from Japanese flounder (Paralichthys olivaceus) Food Funct. 2019;10:6615–6623. doi: 10.1039/C9FO01402K. PubMed DOI

Muñoz-Colmenero M., Rahman S., Martínez J.L., Garcia-Vazquez E. High variability in parvalbumin beta 1 genes offers new molecular options for controlling the mislabeling in commercial Salmonids. Eur. Food Res. Technol. 2019;245:1685–1694. doi: 10.1007/s00217-019-03278-0. DOI

Choi K.Y., Hong K.W. Genomic DNA sequence of mackerel parvalbumin and a PCR test for rapid detection of allergenic mackerel ingredients in food. Food Sci. Biotechnol. 2007;16:67–70.

Prado M., Boix A., von Holst C. Development of a real-time PCR method for the simultaneous detection of mackerel and horse mackerel. Food Control. 2013;34:19–23. doi: 10.1016/j.foodcont.2013.04.007. DOI

Heizmann W., Hauptle M., Eppenberger H.M. The purification, characterisation and localisation of a parvalbumin like protein from chicken-leg muscle. Eur. J. Biochem. 1977;80:433–441. doi: 10.1111/j.1432-1033.1977.tb11898.x. PubMed DOI

Gerday C., Joris B., Gerardin-Otthiers N., Collin S., Hamoir G. Parvalbumins from the lungfish (Protopterus dolloi) Biochemistry. 1979;61:589–599. doi: 10.1016/S0300-9084(79)80156-X. PubMed DOI

Hamoir G., Gerardin-Otthiers N. Differentiation of the sarcoplasmic proteins of white, yellowish and cardiac muscles of an antarctic haemoglobin-free fish Champsocephalus gunnari. Comp. Biochem. Physiol. 1980;65:199–206. PubMed

Hildebrandt S. Multiplexed identification of different fish species by detection of parvalbumin, a common fish allergen gene: A DNA application of multi-analyte profiling (xMAP™) technology. Anal. Bioanal. Chem. 2010;397:1787–1796. doi: 10.1007/s00216-010-3760-2. PubMed DOI

Lu Y., Ohshima T., Ushio H. Rapid detection of fish major allergen parvalbumin by surface plasmon resonance biosensor. J. Food Sci. 2004;69:C652–C658. doi: 10.1111/j.1750-3841.2004.tb18013.x. DOI

Wang Y., Li H., Zhou J., Qi Q., Fu L. A colorimetric and fluorescent gold nanoparticle-based dual-mode aptasensor for parvalbumin detection. Microchem. J. 2020;159:105413. doi: 10.1016/j.microc.2020.105413. DOI

Fu L., Qian Y., Zhou J., Zheng L., Wang Y. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Compr. Rev. Food Sci. Food Saf. 2020;19:3343–3364. doi: 10.1111/1541-4337.12641. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...