Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 1951
Austrian Science Fund FWF - Austria
15-34645 L
Grantová Agentura České Republiky
I 1951-B16
Austrian Science Fund
P 24242-B16
Austrian Science Fund
PubMed
29470709
PubMed Central
PMC5994220
DOI
10.1007/s00709-018-1225-1
PII: 10.1007/s00709-018-1225-1
Knihovny.cz E-zdroje
- Klíčová slova
- Green algae, Metabolomics, UV simulation, UV-A, UV-B, Ultrastructure,
- MeSH
- Chlorophyta metabolismus MeSH
- fotosyntéza fyziologie MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
- Arktida MeSH
Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m-2 s-1) in combination with experimental UV-A (315-400 nm, 5.7 W m-2, no UV-B), designated as PA, or UV-A (10.1 W m-2) + UV-B (280-315 nm, 1.0 W m-2), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p < 0.05) increase in Zygnema spp. C and S. The content of UV-absorbing phenolic compounds was significantly higher (p < 0.05) in young vegetative cells compared to pre-akinetes. In young vegetative Zygnema sp. S, these phenolic compounds significantly increased (p < 0.05) upon PA and PAB. Transmission electron microscopy showed an intact ultrastructure with massive starch accumulations at the pyrenoids under PA and PAB. A possible increase in electron-dense bodies in PAB-treated cells and the occurrence of cubic membranes in the chloroplasts are likely protection strategies. Metabolite profiling by non-targeted RP-UHPLC-qToF-MS allowed a clear separation of the strains, but could not detect changes due to the PA and PAB treatments. Six hundred seventeen distinct molecular masses were detected, of which around 200 could be annotated from databases. These results indicate that young vegetative cells can adapt better to the experimental UV-B stress than pre-akinetes.
Zobrazit více v PubMed
Aigner S, Remias D, Karsten U, Holzinger A. Unusual phenolic compounds contribute to the ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J Phycol. 2013;49:648–660. doi: 10.1111/jpy.12075. PubMed DOI PMC
Bakker ME, Lokhorst GM. Ultrastructure of mitosis and cytokinesis in Zygnema sp. (Zygnematales, Chlorophyta) Protoplasma. 1987;138:105–118. doi: 10.1007/BF01281019. DOI
Caldwell M. Solar UV irradiation and the growth and development of higher plants. In: Giese AC, editor. Photophysiology vol. V. New York: Academic Press; 1971. pp. 131–177.
Cannell RJP, Farmer PW, John M. Purification and characterization of pentagalloylglucose, an α-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochem J. 1988;255:937–941. doi: 10.1042/bj2550937. PubMed DOI PMC
Choi J-I, Yoon M, Lim S, Kim GH, Park H. Effect of gamma irradiation on physiological and proteomic changes of arctic Zygnema sp. (Cholorophyta, Zygnematales) Phycologia. 2015;54:333–341. doi: 10.2216/14-106.1. DOI
Deng Y, Almsherqi ZA. Evolution of cubic membranes as antioxidant defense system. Interface Focus. 2015;5:20150012. doi: 10.1098/rsfs.2015.0012. PubMed DOI PMC
Döhring T, Köfferlein M, Thiel S, Seidlitz H. Spectral shaping of artificial UV-B irradiation for vegetation stress research. J Plant Physiol. 1996;148:115–119. doi: 10.1016/S0176-1617(96)80302-6. DOI
Germ M, Kreft I, Gaberščik A. UV-B radiation and selenium affected energy availability in green alga Zygnema. Biologia. 2009;64:676–679. doi: 10.2478/s11756-009-0062-2. DOI
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4 (http://folk.uio.no/ohammer/past)
Hartmann A, Albert A, Ganzera M. Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria. J Photochem Photobiol B. 2015;149:149–155. doi: 10.1016/j.jphotobiol.2015.05.016. PubMed DOI PMC
Hartmann A, Holzinger A, Ganzera M, Karsten U. Prasiolin, a new UV-sunscreen compound in the terrestrial green macroalga Prasiola calophylla (Carmichael ex Greville) Kützing (Trebouxiophyceae, Chlorophyta) Planta. 2016;243:161–169. doi: 10.1007/s00425-015-2396-z. PubMed DOI PMC
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma. 2015;252:571–589. doi: 10.1007/s00709-014-0703-3. PubMed DOI PMC
Herburger K, Remias D, Holzinger A. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS Microbiol Ecol. 2016;92:fiw 103. doi: 10.1093/femsec/fiw103. PubMed DOI PMC
Holzinger A, Lütz C. Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron. 2006;37:190–207. doi: 10.1016/j.micron.2005.10.015. PubMed DOI
Holzinger A, Pichrtová M. Abiotic stress tolerance in charophyte green algae: new challenges for omics techniques. Front Plant Sci. 2016;7:678. doi: 10.3389/fpls.2016.00678. PubMed DOI PMC
Holzinger A, Roleda MY, Lütz C. The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI
Holzinger A, Allen MC, Deheyn DD. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J Photochem Photobiol B. 2016;162:412–420. doi: 10.1016/j.jphotobiol.2016.07.001. PubMed DOI PMC
Kakkou C, Barták M, Hájek J, Skácelová K, Hazdrová J. Effects of controlled oxidative stress and uncouplers on primary photosynthetic processes in vegetative cells of Antarctic alga Zygnema sp. Czech Polar Rep. 2016;6:96–107. doi: 10.5817/CPR2016-1-10. DOI
Kaplan F, Lewis LA, Herburger K, Holzinger A. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema sp. (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron. 2013;44:317–330. doi: 10.1016/j.micron.2012.08.004. PubMed DOI PMC
Karsten U, Holzinger A. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv. 2014;23:1845–1858. doi: 10.1007/s10531-014-0653-2. PubMed DOI PMC
Karsten U, Lembcke S, Schumann R. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta. 2007;225:991–1000. doi: 10.1007/s00425-006-0406-x. PubMed DOI
Kitzing C, Pröschold T, Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. Microbial Ecol. 2014;67:327–340. doi: 10.1007/s00248-013-0317-x. PubMed DOI
Lütz C, Seidlitz HK, Meindl U. Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV-B simulation. Plant Ecol. 1997;128:55–64. doi: 10.1023/A:1009754722357. DOI
McLean RJ, Pessoney GF. A large scale quasi-crystalline lamellar lattice in chloroplasts of the green alga Zygnema. J Cell Biol. 1970;45:522–531. doi: 10.1083/jcb.45.3.522. PubMed DOI PMC
McLean RJ, Pessoney GF (1971) Formation and resistance of akinetes of Zygnema. In: Parker BC, Brown RM Jr (eds) Contributions in phycology. Allen, Lawrence, pp 145–152
Meindl U, Lütz C. Effects of UV irradiation on cell development and ultrastructure of the green alga Micrasterias. J Photochem Photobiol B Biol. 1996;36:285–292. doi: 10.1016/S1011-1344(96)07395-2. DOI
Nishizawa M, Yamagishi T, Nonaka G-I, Nishioka I, Ragan MA. Gallotannins of the freshwater green alga Spirogyra sp. Phytochemistry. 1985;24:2411–2413. doi: 10.1016/S0031-9422(00)83053-8. DOI
Pichrtová M, Remias D, Lewis LA, Holzinger A. Changes in phenolic compounds and cellular ultrastructure of arctic and Antarctic strains of Zygnema (Zygnematales, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol. 2013;65:68–83. doi: 10.1007/s00248-012-0096-9. PubMed DOI PMC
Pichrtová M, Kulichová J, Holzinger A. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae) from polar habitats. PLoS One. 2014;9(11):e113137. doi: 10.1371/journal.pone.0113137. PubMed DOI PMC
Pichrtová M, Hájek T, Elster J. Annual development of mat-forming conjugating green algae Zygnema spp. in hydroterrestrial habitats in the Arctic. Polar Biol. 2016;39:1653–1662. doi: 10.1007/s00300-016-1889-y. DOI
Pichrtová M, Arc E, Stöggl W, Kranner I, Hájek T, Hackl H, Holzinger A. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiol Ecol. 2016;92:fiw096. doi: 10.1093/femsec/fiw096. PubMed DOI PMC
Prieto-Amador M. UV-B effects on filamentous alga Zygnema strain (EEL201) from Antarctica. Czech Polar Rep. 2016;6:43–53. doi: 10.5817/CPR2016-1-5. DOI
Remias D, Lütz-Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–268. doi: 10.1080/09670260500202148. DOI
Remias D, Albert A, Lütz C. Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae) Photosynthetica. 2010;48:269–277. doi: 10.1007/s11099-010-0033-4. DOI
Remias D, Holzinger A, Aigner S, Lütz C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic) Polar Biol. 2012;35:899–908. doi: 10.1007/s00300-011-1135-6. DOI
Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol. 2012;79:638–648. doi: 10.1111/j.1574-6941.2011.01245.x. PubMed DOI
Rippin M, Becker B, Holzinger A. Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol. 2017;58:2067–2084. doi: 10.1093/pcp/pcx136. PubMed DOI PMC
Stamenković M, Hanelt D. Sensitivity of photosynthesis to UV radiation in several Cosmarium strains (Zygnematophyceae, Streptophyta) is related to their geographic distribution. Photochem Photobiol Sci. 2014;13:1066–1081. doi: 10.1039/C3PP50192B. PubMed DOI
Stamenković M, Hanelt D. Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review. Hydrobiologia. 2017;787:1–26. doi: 10.1007/s10750-016-2958-5. DOI
Stamenković M, Bischof K, Hanelt D. Xanthophyll cycle pool size and composition in several Cosmarium strains (Zygnematophyceae, Streptophyta) are related to their geographic distribution pattern. Protist. 2014;165:14–30. doi: 10.1016/j.protis.2013.10.002. PubMed DOI
Stamenković M, Woelken E, Hanelt D. Ultrastructure of Cosmarium strains (Zygnematophyceae, Streptophyta) collected from various geographic locations shows species-specific differences both at optimal and stress temperatures. Protoplasma. 2014;251:1491–1509. doi: 10.1007/s00709-014-0652-x. PubMed DOI
Stancheva R, Hall JD, Sheath RG. Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol. 2012;48:409–422. doi: 10.1111/j.1529-8817.2012.01127.x. PubMed DOI
Suhre K, Schmitt-Kopplin P. MassTRIX: mass translator into pathways. Nucleic Acids Res. 2008;36(Suppl 2):W481–W484. doi: 10.1093/nar/gkn194. PubMed DOI PMC
Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz H. A phytotron for plant stress research: how far can artificial lighting compare to natural sunlight? J Plant Physiol. 1996;148:456–463. doi: 10.1016/S0176-1617(96)80279-3. DOI
Zhan T, Lv W, Deng Y. Multilayer gyroid cubic membrane organization in green alga Zygnema. Protoplasma. 2017;254:1923–1930. doi: 10.1007/s00709-017-1083-2. PubMed DOI
Seasonal Dynamics of Zygnema (Zygnematophyceae) Mats from the Austrian Alps