3D-reconstructions of zygospores in Zygnema vaginatum (Charophyta) reveal details of cell wall formation, suggesting adaptations to extreme habitats
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
P 34181
Austrian Science Fund FWF - Austria
PubMed
37616005
PubMed Central
PMC10953328
DOI
10.1111/ppl.13988
Knihovny.cz E-zdroje
- MeSH
- buněčná stěna MeSH
- ekosystém MeSH
- fylogeneze MeSH
- parožnatky * MeSH
- škrob MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- škrob MeSH
The streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land. Moreover, sexual reproduction features are important for species determination. We present a phylogenetic analysis of a field-sampled Zygnema strain and analyze its conjugation process and zygospore morphology, both at the micro- and nanoscale, including 3D-reconstructions of the zygospore architecture. Vegetative filament size (26.18 ± 1.07 μm) and reproductive features allowed morphological determination of Zygnema vaginatum, which was combined with molecular analyses based on rbcL sequencing. Transmission electron microscopy (TEM) depicted a thin cell wall in young zygospores, while mature cells exhibited a tripartite wall, including a massive and sculptured mesospore. During development, cytological reorganizations were visualized by focused ion beam scanning electron microscopy (FIB-SEM). Pyrenoids were reorganized, and the gyroid cubic central thylakoid membranes, as well as the surrounding starch granules, degraded (starch granule volume: 3.58 ± 2.35 μm3 in young cells; 0.68 ± 0.74 μm3 at an intermediate stage of zygospore maturation). Additionally, lipid droplets (LDs) changed drastically in shape and abundance during zygospore maturation (LD/cell volume: 11.77% in young cells; 8.79% in intermediate cells, 19.45% in old cells). In summary, we provide the first TEM images and 3D-reconstructions of Zygnema zygospores, giving insights into the physiological processes involved in their maturation. These observations help to understand mechanisms that facilitated the transition from water to land in Zygnematophyceae.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany University of Innsbruck Innsbruck Austria
Institute of Biological Sciences University of Rostock Rostock Germany
Laboratoire de Physiologie Cellulaire et Végétale CEA CNRS INRAE Univ Grenoble Alpes Grenoble France
Laboratoire Modélisation et Exploration des Matériaux IRIG CEA Univ Grenoble Alpes Grenoble France
Zobrazit více v PubMed
Armbrust, E.V. , Ferris, P.J. & Goodenough, U.W. (1993) A mating type‐linked gene cluster expressed in Chlamydomonas zygotes participates in the uniparental inheritance of the chloroplast genome. Cell, 74, 801–811. Available from: 10.1016/0092-8674(93)90460-8 PubMed DOI
Becker, B. & Marin, B. (2009) Streptophyte algae and the origin of embryophytes. Annals of Botany, 103, 999–1004. Available from: 10.1093/aob/mcp044 PubMed DOI PMC
Blokker, P. (2000) Structural analysis of resistant polymers in extant algae and ancient sediments. Geologica Ultraiectina, 193, 1–145.
Burton, W.G. , Grabowy, C.T. & Sager, R. (1979) Role of methylation in the modification and restriction of chloroplast DNA in Chlamydomonas . Proceedings of the National Academy of Sciences of the United States of America, 76, 1390–1394. Available from: 10.1073/pnas.76.3.1390 PubMed DOI PMC
Cheng, J. , Fujita, A. , Ohsaki, Y. , Suzuki, M. , Shinohara, Y. & Fujimoto, T. (2009) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochemistry and Cell Biology, 132, 281–291. Available from: 10.1007/s00418-009-0615-z PubMed DOI
Cheng, S. , Xian, W. , Fu, Y. , Marin, B. , Keller, J. , Wu, T. et al. (2019) Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell, 179, 1057–1067.e14. Available from: 10.1016/j.cell.2019.10.019 PubMed DOI
Czurda, V. (1930) Experimentelle Untersuchungen über die Sexualitäts‐Verhältnisse der Zygnemalen. Beihefte zum Botanischen Zentralblatt, 47, 15–68.
Dadras, A. , Fürst‐Jansen, J.M.R. , Darienko, T. , Krone, D. , Scholz, P. , Rieseberg, T.P. et al. (2022) Environmental gradients reveal stress hubs predating plant terrestrialization. bioRxiv. Available from: 10.1101/2022.10.17.512551 PubMed DOI PMC
de Vries, J. , de Vries, S. , Curtis, B.A. , Zhou, H. , Penny, S. , Feussner, K. et al. (2020) Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. The Plant Journal, 103, 1025–1048. Available from: 10.1111/tpj.14782 PubMed DOI
de Vries, J. , Curtis, B.A. , Gould, S.B. & Archibald, J.M. (2018) Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the United States of America, 115, E3471–E3480. Available from: 10.1073/pnas.1719230115 PubMed DOI PMC
de Vries, J. & Ischebeck, T. (2020) Ties between stress and lipid droplets pre‐date seeds. Trends in Plant Science, 10, 1203–1214. Available from: 10.1016/j.tplants.2020.07.017 PubMed DOI
de Vries, J. , Stanton, A. , Archibald, J.M. & Gould, S.B. (2016) Streptophyte terrestrialization in light of plastid evolution. Trends in Plant Science, 21, 467–476. Available from: 10.1016/j.tplants.2016.01.021 PubMed DOI
de Vries, S. , Fürst‐Jansen, J.M.R. , Irisarri, I. , Dhabalia Ashok, A. , Ischebeck, T. , Feussner, K. et al. (2021) The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. The Plant Journal, 107, 975–1002. Available from: 10.1111/tpj.15387 PubMed DOI
El‐Sheekh, M. , Gharieb, M.M. & Schagerl, M. (2018) Induction of sexual reproduction and zygospore patterns in the filamentous green alga Spirogyra (Conjugatophyceae: Zygnematales). Journal of BioScience and Biotechnology, 6, 147–154.
Elster, J. (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer, L. & Bölter, M. (Eds.) Ecological studies, Vol. 154, Geoecology of Antarctic ice‐free coastal landscapes. Cham, Switzerland: Springer Nature Switzerland AG, pp. 303–326.
Feng, X. , Holzinger, A. , Permann, C. , Anderson, D. & Yin, Y. (2021) Characterization of two Zygnema strains (SAG 698‐1a and 698‐1b) and a rapid method to estimate genome size of Zygnematophycean green algae. Frontiers Plant Science, 12, 610381. Available from: 10.3389/fpls.2021.610381 PubMed DOI PMC
Feng, X. , Zheng, J. , Irisarri, I. , Yu, H. , Zheng, B. , Ali, Z. et al. (2023) Chromosome‐level genomes of multicellular algal sisters to land plants illuminate signaling network evolution. bioRxiv. Available from: 10.1101/2023.01.31.526407v1 PubMed DOI PMC
Fuller, C. (2013) Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period. Master's thesis. San Marcos, San Marcos, USA: California State University.
Gauche, H.G. (Ed.). (1966) Studies on the life cycle and genetics of Zygnema. Master's thesis. NY, USA: Cornell University.
Guiry, M.D. (2023) AlgaeBase. World‐wide electronic publication. Galway: National University of Ireland. Available from: http://www.algaebase.org [Accessed 31st January 2023]
Hall, J.D. , Karol, K.G. , McCourt, R.M. & Delwiche, C.F. (2008) Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. Journal of Phycology, 44, 467–477. Available from: 10.1111/j.1529-8817.2008.00485.x PubMed DOI
Hawes, I. (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 29, 326–331. Available from: 10.2216/i0031-8884-29-3-326.1 DOI
Hepperle, D. (2004) SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences . Available from: http://www.sequentix.de [Accessed 21st February 2023]
Herburger, K. , Lewis, L.A. & Holzinger, A. (2015) Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre‐akinete formation. Protoplasma, 252, 571–589. Available from: 10.1007/s00709-014-0703-3 PubMed DOI PMC
Herburger, K. , Xin, A. & Holzinger, A. (2019) Homogalacturonan accumulation in cell walls of the green alga Zygnema sp. (Charophyta) increases desiccation resistance. Frontiers in Plant Science, 10, 540. Available from: 10.3389/fpls.2019.00540 PubMed DOI PMC
Heredia‐Martínez, L.G. , Andrés‐Garrido, A. , Martínez‐Force, E. , Pérez‐Pérez, M.E. & Crespo, J.L. (2018) Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in Chlamydomonas . Plant Physiology, 178, 1112–1129. Available from: 10.1104/pp.18.00630 PubMed DOI PMC
Hess, S. , Williams, S.K. , Busch, A. , Irisarri, I. , Delwiche, C.F. , de Vries, S. et al. (2022) A phylogenomically informed five‐order system for the closest relatives of land plants. Current Biology, 32, 4473–4482.e7. Available from: 10.1016/j.cub.2022.08.022 PubMed DOI PMC
Holzinger, A. , Albert, A. , Aigner, S. , Uhl, J. , Schmitt‐Kopplin, P. , Trumhova, K. et al. (2018) Arctic, Antarctic, and temperate green algae Zygnema spp. under UV‐B stress: vegetative cells perform better than pre‐akinetes. Protoplasma, 255, 1239–1252. Available from: 10.1007/s00709-018-1225-1 PubMed DOI PMC
Holzinger, A. , Roleda, M.Y. & Lütz, C. (2009) The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron, 40, 831–838. Available from: 10.1016/j.micron.2009.06.008 PubMed DOI
Huang, N.‐L. , Huang, M.‐D. , Chen, T.‐L.L. & Huan, A.H.C. (2013) Oleosin of subcellular lipid droplets evolved in green algae. Plant Physiology, 161, 1862–1874. Available from: 10.1104/pp.112.212514 PubMed DOI PMC
Huang, S. , Jiang, L. & Zhuang, X. (2019) Possible roles of membrane trafficking components for lipid droplet dynamics in higher plants and green algae. Frontiers in Plant Science, 10, 207. Available from: 10.3389/fpls.2019.00207 PubMed DOI PMC
Ikegaya, H. , Nakase, T. , Iwata, K. , Tsuchida, H. , Sonobe, S. & Shimmen, T. (2012) Studies on conjugation of Spirogyra using monoclonal culture. Journal of Plant Research, 125, 457–464. Available from: 10.1007/s10265-011-0457-3 PubMed DOI PMC
Jiang, P.‐L. & Tzen, J.T.C. (2010) Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signaling & Behavior, 5, 447–449. Available from: 10.4161/psb.5.4.10874 PubMed DOI PMC
Jiao, C. , Sørensen, I. , Sun, X. , Sun, H. , Behar, H. , Alseekh, S. et al. (2020) The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell, 181, 1097–1111.e12. Available from: 10.1016/j.cell.2020.04.019 PubMed DOI
Kadlubowska, J.Z. (1984) Süßwasserflora von Mitteleuropa, Bd 16: Chlorophyta VIII. Heidelberg, Germany: Springer Spektrum.
Kaplan, F. , Lewis, L.A. , Herburger, K. & Holzinger, A. (2013) Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron, 44, 317–330. Available from: 10.1016/j.micron.2012.08.004 PubMed DOI PMC
Kim, J.‐H. , Boo, S. & Kim, Y.H. (2012) Morphology and plastid psbA phylogeny of Zygnema (Zygnemataceae, Chlorophyta) from Korea: Z. insigne and Z. leiospermum . Algae, 27, 225–234. Available from: 10.4490/algae.2012.27.4.225 DOI
Klebs, G.A. (1886) Über die Organisation der Gallerte bei einigen Algen und Flagellaten. Untersuchungen Botanische Institut Tübingen, 2, 333–417 pls III, IV.
Kumar, S. , Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. Available from: 10.1093/molbev/msw054 PubMed DOI PMC
Kuroiwa, T. , Kawano, S. , Nishibayashi, S. & Sato, C. (1982) Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature, 298, 481–483. Available from: 10.1038/298481a0 PubMed DOI
Leebens‐Mack, J.H. , Barker, M.S. , Carpenter, E.J. , Deyholos, M.K. , Gitzendanner, M.A. , Graham, S.W. et al. (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574, 679–685. Available from: 10.1038/s41586-019-1693-2 PubMed DOI PMC
Levesque‐Lemay, M. , Chabot, D. , Hubbard, K. , Chan, J.K. , Miller, S. & Robert, L.S. (2016) Tapetal oleosins play an essential role in tapetosome formation and protein relocation in pollen coat. New Phytologist, 209, 691–704. Available from: 10.1111/nph.13611 PubMed DOI
Li, L. , Wang, S. , Wang, H. , Sahu, S.K. , Marin, B. , Li, H. et al. (2020) The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220–1231. Available from: 10.1038/s41559-020-1221-7 PubMed DOI PMC
McCourt, R.M. , Karol, K.G. , Bell, J. , Helm‐Bychowski, K.M. , Grajewska, A. , Wojciechowski, M.F. et al. (2000) Phylogeny of the conjugating green algae (Zygnemophyceae) based on rbcL sequences. Journal of Phycology, 36, 747–758. Available from: 10.1046/j.1529-8817.2000.99106.x PubMed DOI
Miller, R.D. (1973) A development and physiological comparison of two mating strains of Zygnema circumcarinatum (Czurda). Master's thesis. Tucson, USA: University of Arizona.
Novis, P.M. (2004) New records of Spirogyra and Zygnema (Charophyceae, Chlorophyta) in New Zealand. New Zealand Journal of Botany, 42, 139–152. Available from: 10.1080/0028825X.2004.9512895 DOI
Nylander, J.A.A. (2004) MrModeltest 2.3. Distributed by the author. Sweden: Evolutionary Biology Centre, Uppsala University.
Parish, R.W. & Li, S.F. (2010) Death of a tapetum: a programme of developmental altruism. Plant Science, 178, 73–89. Available from: 10.1016/j.plantsci.2009.11.001 DOI
Permann, C. , Gierlinger, N. & Holzinger, A. (2022) Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. Frontiers in Plant Science, 13, 1080111. Available from: 10.3389/fpls.2022.1080111 PubMed DOI PMC
Permann, C. , Herburger, K. , Felhofer, M. , Gierlinger, N. , Lewis, L.A. & Holzinger, A. (2021) Induction of conjugation and zygospore cell wall characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): advantage under climate change scenarios? Plants, 10, 1740. Available from: 10.3390/plants10081740 PubMed DOI PMC
Permann, C. , Herburger, K. , Niedermeier, M. , Felhofer, M. , Gierlinger, N. & Holzinger, A. (2021) Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy. Protoplasma, 258, 1261–1275. Available from: 10.1007/s00709-021-01659-5 PubMed DOI PMC
Permann, C. , Pierangelini, M. , Remias, D. , Lewis, L.A. & Holzinger, A. (2022) Photophysiological investigations of the temperature stress responses of Zygnema spp (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia, 61, 299–311. Available from: 10.1080/00318884.2022.2043089 DOI
Pfeifer, L. , Utermöhlen, J. , Happ, K. , Permann, C. , Holzinger, A. , von Schwartzenberg, K. et al. (2022) Search for evolutionary roots of land plant arabinogalactan‐proteins in charophytes: presence of a rhamnogalactan‐protein in Spirogyra pratensis (Zygnematophyceae). The Plant Journal, 109, 568–584. Available from: 10.1111/tpj.15577 PubMed DOI PMC
Pichrtová, M. , Arc, E. , Stöggl, W. , Kranner, I. , Hájek, T. , Hackl, H. et al. (2016) Formation of lipid bodies and changes in fatty acid composition upon pre‐akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology, 92, fiw096. Available from: 10.1093/femsec/fiw096 PubMed DOI PMC
Pichrtová, M. , Hájek, T. & Elster, J. (2014) Osmotic stress and recovery infield populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiology Ecology, 89, 270–280. Available from: 10.1111/1574-6941.12288 PubMed DOI
Pichrtová, M. , Hájek, T. & Elster, J. (2016) Annual development of mat‐forming conjugating green algae Zygnema spp. in hydro‐terrestrial habitats in the Arctic. Polar Biology, 39, 1653–1662. Available from: 10.1007/s00300-016-1889-y DOI
Pichrtová, M. , Holzinger, A. , Kulichová, J. , Ryšánek, D. , Šoljaková, T. , Trumhová, K. et al. (2018) Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) from Svalbard (High Arctic). European Journal of Social Psychology, 53, 492–508. Available from: 10.1080/09670262.2018.1476920 PubMed DOI PMC
Pichrtová, M. , Kulichová, J. & Holzinger, A. (2014) Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae) from polar habitats. PLoS One, 9, e113137. Available from: 10.1371/journal.pone.0113137 PubMed DOI PMC
Poulícková, A. , Zizka, Z. , Hasler, P. & Benada, O. (2007) Zygnematalean zygospores: morphological features and use in species identification. Folia Microbiologica, 52, 135–145. Available from: 10.1007/BF02932152 PubMed DOI
Rahman, F. , Hassan, M. , Hanano, A. , Fitzpatrick, D.A. , McCarthy, C.G.P. & Murphy, D.J. (2018) Evolutionary, structural and functional analysis of the caleosin/peroxygenase gene family in the Fungi. BMC Genomics, 19, 976. Available from: 10.1186/s12864-018-5334-1 PubMed DOI PMC
Rahman, F. , Hassan, M. , Rosli, R. , Almousally, I. , Hanano, A. & Murphy, D.J. (2018) Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae. PLoS One, 13, e0196669. Available from: 10.1371/journal.pone.0196669 PubMed DOI PMC
Rambaut, A. (2018) FigTree. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Tree figure drawing tool. Available from: http://tree.bio.ed.ac.uk/software/figtree [Accessed 21st February 2023]
Rambold, A.S. , Cohen, S. & Lippincott‐Schwartz, J. (2015) Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell, 32, 678–692. Available from: 10.1016/j.devcel.2015.01.029 PubMed DOI PMC
Randhawa, M.S. (1959) Zygnemaceae. New Delhi: Indian Council of Agricultural Research.
Renkert, U. (1987) Sexuelle Fortpflanzung von Zygnemopsis circumcarinatum. Master's thesis. Göttingen, Germany: University of Göttingen.
Rieseberg, T.P. , Dadras, A. , Fürst‐Jansen, J.M.R. , Dhabalia Ashok, A. , Darienko, T. , de Vries, S. et al. (2022) Crossroads in the evolution of plant specialized metabolism. Seminars in Cell Developmental Biology, 134, 37–58. Available from: 10.1016/j.semcdb.2022.03.004 PubMed DOI
Rippin, M. , Becker, B. & Holzinger, A. (2017) Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant and Cell Physiology, 58, 2067–2084. Available from: 10.1093/pcp/pcx136 PubMed DOI PMC
Roland, J.C. , Reis, D. , Vian, B. , Satiat‐Jeunemaitre, B. & Mosiniak, M. (1987) Morphogenesis of plant cell walls at the supramolecular level: internal geometry and versatility of helicoidal expression. Protoplasma, 140, 75–91. Available from: 10.1007/BF01273716 DOI
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. Available from: 10.1093/bioinformatics/btg180 PubMed DOI
Rundina, L.A. (1998) The Zygnematales of Russia (Chlorophyta: Zygnematophyceae). St. Petersburg, Russia: Nauka. In Russian.
Ryšánek, D. , Hrčková, K. & Škaloud, P. (2015) Global ubiquity and local endemism of free‐living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium . Environmental Microbiology, 17, 689–698. Available from: 10.1111/1462-2920.12501 PubMed DOI
Sanderson, M.J. , Thorne, J.L. , Wikstrom, N. & Bremer, K. (2004) Molecular evidence on plant divergence times. American Journal of Botany, 91, 1656–1665. Available from: 10.3732/ajb.91.10.1656 PubMed DOI
Sekimoto, H. , Komiya, A. , Tsuyuki, N. , Kawai, J. , Kanda, N. , Ootsuki, R. et al. (2023) A divergent RWP‐RK transcription factor determines mating type in heterothallic Closterium . New Phytologist, 237, 1636–1651. Available from: 10.1111/nph.18662 PubMed DOI
Serrano‐Pérez, E. , Romero‐Losada, A.B. , Morales‐Pineda, M. , García‐Gómez, M.E. , Couso, I. , García‐González, M. et al. (2022) Transcriptomic and metabolomic response to high light in the charophyte alga Klebsormidium nitens . Frontiers in Plant Science, 13, 855243. Available from: 10.3389/fpls.2022.855243 PubMed DOI PMC
Singh, R. , Kaushik, S. , Wang, Y. , Xiang, Y. , Novak, I. , Komatsu, M. et al. (2009) Autophagy regulates lipid metabolism. Nature, 458, 1131–1135. Available from: 10.1038/nature07976 PubMed DOI PMC
Stancheva, R. , Sheath, R.G. & Hall, J.D. (2012) Systematics of the genus Zygnema (Zygnematophyceae, charophyta) from Californian watersheds. Journal of Phycology, 48, 409–422. Available from: 10.1111/j.1529-8817.2012.01127.x PubMed DOI
Swofford, D.L. (2002) PAUP* 4.0b10. Phylogenetic analysis using parsimony (*and other methods). Sunderland, Massachusetts, USA: Sinauer Associates.
Takano, T. , Higuchi, S. , Ikegaya, H. , Matsuzaki, R. , Kawachi, M. , Takahashi, F. et al. (2019) Identification of 13 Spirogyra species (Zygnemataceae) by traits of sexual reproduction induced under laboratory culture conditions. Scientific Reports, 9, 7458. Available from: 10.1038/s41598-019-43454-6 PubMed DOI PMC
Trumhova, K. , Holzinger, A. , Obwegeser, S. , Neuner, G. & Pichrtová, M. (2019) The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre‐akinetes). Protoplasma, 256, 1681–1694. Available from: 10.1007/s00709-019-01404-z PubMed DOI PMC
Uwizeye, C. , Decelle, J. , Jouneau, P.‐H. , Flori, S. , Gallet, B. , Keck, J.‐B. et al. (2021) Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nature Communications, 12, 1049. Available from: 10.1038/s41467-021-21314-0 PubMed DOI PMC
van Zutphen, T. , Todde, V. , de Boer, R. , Kreim, M. , Hofbauer, H.F. , Wolinski, H. et al. (2014) Lipid droplet autophagy in the yeast Saccharomyces cerevisiae . Molecular Biology of the Cell, 25, 290–301. Available from: 10.1091/mbc.E13-08-0448 PubMed DOI PMC
Wodniok, S. , Brinkmann, H. , Glöckner, G. , Heidel, A.J. , Philippe, H. , Melkonian, M. et al. (2011) Origin of land plants: do conjugating green algae hold the key? BMC Ecology and Evolution, 11, 104. Available from: 10.1186/1471-2148-11-104 PubMed DOI PMC
Zarina, A. , Masud‐Ul‐Hasan & Shameel, M. (2006) Taxonomic studies of the genus Zygnema from North‐Eastern areas of Pakistan. Pakistan Journal of Botany, 38, 425–433.
Zhan, T. , Lv, W. & Deng, Y. (2017) Multilayer gyroid cubic membrane organization in green alga Zygnema . Protoplasma, 254, 1923–1930. Available from: 10.1007/s00709-017-1083-2 PubMed DOI
Zhong, B. , Xi, Z. , Goremykin, V.V. , Fong, R. , Mclenachan, P.A. , Novis, P.M. et al. (2014) Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Molecular Biology and Evolution, 31, 177–183. Available from: 10.1093/molbev/mst200 PubMed DOI
Zhuang, X. & Jiang, L. (2019) Chloroplast degradation: multiple routes into the vacuole. Frontiers in Plant Science, 10, 359. Available from: 10.3389/fpls.2019.00359 PubMed DOI PMC
Zienkiewicz, A. , Zienkiewicz, K. , Rejón, J.D. , de Dios Alché, J. , Castro, A.J. & Rodríguez, M.I. (2014) Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies. Journal of Experimental Botany, 65, 103–115. Available from: 10.1093/jxb/ert355 PubMed DOI PMC
Zienkiewicz, K. & Zienkiewicz, A. (2020) Degradation of lipid droplets in plants and algae—right time, many paths, one goal. Frontiers in Plant Science, 11, 579019. Available from: 10.3389/fpls.2020.579019 PubMed DOI PMC
Zwickl, D. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis. Austin, USA: University of Texas at Austin.
Zwirn, M. , Chen, C. , Uher, B. & Schagerl, M. (2013) Induction of sexual reproduction in Spirogyra clones – does an universal trigger exist? Fottea, 13, 77–85. Available from: 10.5507/fot.2013.007 DOI