Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains

. 2016 Jul ; 92 (7) : . [epub] 20160510

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27170362

Grantová podpora
I 1951 Austrian Science Fund FWF - Austria
P 24242 Austrian Science Fund FWF - Austria

Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions.

Zobrazit více v PubMed

Abe K, Ishiwatari T, Wakamatsu M, et al. Fatty acid content and profile of the aerial microalga Coccomyxa sp. isolated from dry environments. Appl Biochem Biotech. 2014;174:1724–35. PubMed

Aichinger N, Lütz-Meindl U. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells. J Microsc. 2005;219:86–94. PubMed

Arisz SA, van Himbergen JAJ, Musgrave A, et al. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry. 2000;53:265–70. PubMed

Bischoff HW, Bold HC. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. Austin,TX: University of Texas; 1963. Publ. No. 6318.

Boyle NR, Page MD, Liu B, et al. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem. 2012;287:15811–25. PubMed PMC

Darling RB, Friedmann EI, Broady PA. Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and reponse to temperature. J Phycol. 1987;23:598–607. PubMed

Davey MC. Ecology of terrestrial algae of the fellfield ecosystems of Signy Island, South Orkney Islands. Brit Antarct Surv B. 1988;81:69–74.

Ellis EA. Solutions to the problem of substitution of ERL 4221 for vinyl cyclo-hexene dioxide in Spurr low viscosity embedding formulations. Micros Today. 2006;14:32–3.

Elster J. Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bölter M, editors. Geoecology of Antarctic Ice-Free Coastal Landscapes, Ecological Studies. Vol. 154. Berlin: Springer; 2002. pp. 303–26.

Fuller C. Ph.D. Thesis. Department of Biological Sciences, California State University: 2013. Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period.

Giordano M, Palmucci M, Norici A. Taxonomy and growth conditions concur to determine the energetic suitability of algal fatty acid complements. J Appl Phycol. 2015;27:1401–13.

Goncalves EC, Johnson JV, Rathinasabapathi B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta. 2013;238:895–906. PubMed

Graeve M, Kattner G, Wiencke C, et al. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser. 2002;231:67–74.

Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res. 2006;45:160–86. PubMed

Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): Role of pre-akinete formation. Protoplasma. 2015;252:571–89. PubMed PMC

Holzinger A, Roleda MY, Lütz C. The vegetative Arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–8. PubMed

Hoppert M, Reimer R, Kemmling A, et al. Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol J. 2004;21:183–91.

Kaplan F, Lewis LA, Herburger K, et al. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron. 2013;44:317–30. PubMed PMC

Kim GH, Klochkova TA, Kang SH. Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic sea area) J Environ Biol. 2008;29:485–91. PubMed

Kumari P, Kumar M, Reddy CRK, et al. Algal lipids, fatty acids and sterols. In: Dominguez H, editor. Functional Ingredients from Algae for Foods and Nutraceuticals. Cambridge: Woodhead Publishing Limited; 2013.

Lang I, Hodač L, Friedl T, et al. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. PubMed PMC

Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism. In: Last R, editor. Arabidopsis Book. Rockville, MD: American Society of Plant Biologists; 2010. p. e0133. PubMed PMC

Maxwell K, Johnson GN. Chlorophyll fluorescence – a practical guide. J Exp Bot. 2000;51:659–68. PubMed

McLean RJ, Pessoney GF. A large scale quasi-crystalline lamellar lattice in chloroplasts of the green alga Zygnema. J Cell Biol. 1970;45:522–31. PubMed PMC

McLean RJ, Pessoney GF. Formation and resistance of akinetes of Zygnema. In: Parker BC, Brown RM Jr, editors. Contributions in Phycology. Lawrence: Allen; 1971. pp. 145–52.

Miller R, Wu G, Deshpande RR, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010;154:1737–52. PubMed PMC

Morgan-Kiss RM, Priscu JC, Pocock T, et al. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R. 2006;70:222–52. PubMed PMC

Morison MO, Sheath RG. Response to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia. 1985;24:129–45.

Nagao M, Arakawa K, Takezawa D, et al. Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae ) in relation to freezing tolerance. J Plant Res. 1999;112:163–74.

Pichrtová M, Hájek T, Elster J. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol. 2014;89:270–80. PubMed

Pichrtová M, Hájek T, Elster J. Annual development of mat-forming conjugating green algae Zygnema spp. in hydroterrestrial habitats in the Arctic. Polar Biol. 2016

Pichrtová M, Kulichová J, Holzinger A. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS One. 2014;9:e113137. PubMed PMC

Pichrtová M, Remias D, Lewis LA, et al. Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol. 2013;65:68–83. PubMed PMC

Rowntree JK, Duckett JG, Mortimer CL, et al. Formation of specialized propagules resistant to desiccation and cryopreservation in the threatened moss Ditrichum plumbicola (Ditrichales, Bryopsida) Ann Bot. 2007;100:483–96. PubMed PMC

Ruiz-Domínguez MC, Vaquero I, Obregón V, et al. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol. 2015;27:1099–108.

Sawarkar LL, Nandkar PB. Lipid content of some green algae for biodiesel. J Harmon Res Appl Sci. 2013;1:77–9.

Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012;5:1532–53.

Sheath RG, Vis ML, Hambrook JA, et al. Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia. 1996;336:67–82.

Shiratake T, Sato A, Minoda A, et al. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a green alga, Chlorella kessleri. PLoS One. 2013;8:e79630. PubMed PMC

Skácelová K, Barták M, Coufalík P, et al. Biodiversity of freshwater algae and cyanobacteria on deglaciated northern part of James Ross Island, Antarctica. A preliminary study. Czech Polar Rep. 2013;3:93–106.

Solovchenko AE. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physl. 2012;59:167–76.

Spijkerman E, Wacker A, Weithoff G, et al. Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol. 2012;3:380. PubMed PMC

Teoh M, Chu W, Marchant H, et al. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol. 2004;16:421–30.

Thompson GA. Lipids and membrane function in green algae. Biochim Biophys Acta. 1996;1302:17–45. PubMed

Vítová M, Bišová K, Kawano S, et al. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol Adv. 2014;33:1204–18. PubMed

Zhu S, Wang Y, Shang C, et al. Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation. J Biosci Bioeng. 2015;120:205–9. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

3D-reconstructions of zygospores in Zygnema vaginatum (Charophyta) reveal details of cell wall formation, suggesting adaptations to extreme habitats

. 2023 Jul-Aug ; 175 (4) : e13988.

Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta)

. 2021 ; 44 (1) : 105-117. [epub] 20201211

Unicellular versus Filamentous: The Glacial Alga Ancylonema alaskana comb. et stat. nov. and Its Ecophysiological Relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta)

. 2021 May 20 ; 9 (5) : . [epub] 20210520

Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement

. 2020 Jun 11 ; 71 (11) : 3314-3322.

The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes)

. 2019 Nov ; 256 (6) : 1681-1694. [epub] 20190710

Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes

. 2018 Jul ; 255 (4) : 1239-1252. [epub] 20180222

Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps

. 2018 ; 53 (2) : 230-243. [epub] 20180404

Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO2 acquisition

. 2017 Nov ; 246 (5) : 971-986. [epub] 20170718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...