Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 24242
Austrian Science Fund FWF - Austria
PubMed
25398135
PubMed Central
PMC4232603
DOI
10.1371/journal.pone.0113137
PII: PONE-D-14-28023
Knihovny.cz E-zdroje
- MeSH
- DNA rostlinná analýza MeSH
- dusík metabolismus MeSH
- ekosystém MeSH
- fotosystém II - proteinový komplex chemie metabolismus MeSH
- fylogeneze MeSH
- molekulární sekvence - údaje MeSH
- osmotický tlak MeSH
- polymerázová řetězová reakce MeSH
- sekvence nukleotidů MeSH
- Streptophyta klasifikace metabolismus ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- vysoušení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
- Arktida MeSH
- Názvy látek
- DNA rostlinná MeSH
- dusík MeSH
- fotosystém II - proteinový komplex MeSH
BACKGROUND: Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress. KEY FINDINGS: Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation. CONCLUSIONS: The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.
Charles University Prague Faculty of Science Department of Botany Prague Czech Republic
University of Innsbruck Institute of Botany Functional Plant Biology Innsbruck Austria
Zobrazit více v PubMed
Rindi F, Allali HA, Lam DW, López-Bautista JM (2009) An overview of the biodiversity and biogeography of terrestrial green algae. In: Rescigno V, Maletta S, editors. Biodiversity Hotspots. Nova Science Publishers, Inc. pp. 105–122.
Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4: 327. PubMed PMC
Lewis LA, Lewis PO (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol 54: 936–947. PubMed
Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58: 114–122.
Sanderson MJ, Thorne JL, Wikström N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91: 1656–1665. PubMed
Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, et al. (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11: 104. PubMed PMC
Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7: e29696. PubMed PMC
Zhong B, Liu L, Yan Z, Penny D (2013) Origin of land plants using the multispecies coalescent model. Trends Plant Sci 18: 492–495. PubMed
Zhong B, Xi Z, Goremykin VV, Fong R, McLenachan PA, et al. (2014) Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol Biol Evol 31: 177–183. PubMed
Kadlubowska JZ (1984) Conjugatophyceae I: Chlorophyta VIII: Zygnemales. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, editors. Süsswasserflora von Mitteleuropa, Band 16. Jena: Gustav Fisher. pp. 1–532.
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, et al. (2012) Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci 31: 1–46.
Štastný J (2008) Desmids from ephemeral pools and aerophytic habitats from the Czech Republic. Biologia 63: 888–894.
Marshall WA, Chalmers MO (1997) Airborne dispersal of antarctic terrestrial algae and Cyanobacteria. Ecography 20: 585–594.
Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48: 302–312.
Remias D, Holzinger A, Aigner S, Lütz C (2011) Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic). Polar Biol 35: 899–908.
Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia 29: 326–331.
Kim GH, Klochkova TA, Kang SH (2008) Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic sea area). J Environ Biol 29: 485–491. PubMed
Holzinger A, Roleda MY, Lütz C (2009) The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron 40: 831–838. PubMed
Kim GH, Klochkova TA, Han JW, Kang S, Choi HG, et al. (2011) Freshwater and terrestrial algae from Ny-Ålesund and Blomstrandhalvøya Island (Svalbard). Arctic 64: 25–31. PubMed
Vilumbrales DM, Skácelová K, Barták M (2013) Sensitivity of Antarctic freshwater algae to salt stress assessed by fast chlorophyll fluorescence transient. Czech Polar Reports 3: 163–172.
Pichrtová M, Hájek T, Elster J (2014) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol 89: 270–280. PubMed
Elster J, Svoboda J, Komárek J, Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79°N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl Algol Stud 85: 57–93.
Büdel B (2011) Eukaryotic algae. In: Lüttge U, Beck E, Bartels D, editors. Plant desiccation tolerance. Springer. pp. 45–61.
Karsten U, Holzinger A (2014) Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv 23: 1845–1858. PubMed PMC
Karsten U, Holzinger A (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63: 51–63. PubMed
Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30: 1240–1255. PubMed
Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, et al. (2009) Dehydration rate and time of desiccation affect recovery of the lichen alga Trebouxia erici: alternative and classical protective mechanisms. Planta 231: 195–208. PubMed
McLean RJ, Pessoney GF (1971) Formation and resistance of akinetes of Zygnema. In: Parker BC, Brown Jr RM, editors. Contributions in phycology. Allen. pp. 145–152.
Coleman AW (1983) The roles of resting spores and akinetes in chlorophyte survival. In: Fryxell GA, editor. Survival Strategies of the Algae. Cambridge: Cambridge University Press. pp. 1–21.
Morison MO, Sheath RG (1985) Response to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24: 129–145.
Kaplan F, Lewis LA, Herburger K, Holzinger A (2013) Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure. Micron 44: 317–330. PubMed PMC
Fuller C (2013) Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period. M. Sc. Thesis, California State University San Marcos.
Herburger K, Lewis LA, Holzinger A (2014) Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): Role of pre-akinete formation. Protoplasma DOI 10.1007s0070901407033/s00709-014-0703-3 PubMed DOI PMC
Genkel PA, Pronina ND (1979) Ecology of Zygnema stellinum Vauch. during desiccation of a shallow body of water. Biol Bull Acad Sci USSR 6: 504–509. PubMed
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14: 217–232.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, et al. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54: 621–639. PubMed
Pichrtová M, Remias D, Lewis LA, Holzinger A (2013) Changes in phenolic compounds and cellular ultrastructure of arctic and antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol 65: 68–83. PubMed PMC
Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from enchanted rock and related algal species. Univ Texas Publ No 6318.
McCourt RM, Karol KG, Bell J, Helm-Bychowski KM, Grajewska A, et al. (2000) Phylogeny of the conjugating green algae (Zygnemophyceae) based on rbcL sequences. J Phycol 36: 747–758. PubMed
Hall JD, Karol KG, McCourt RM, Delwiche CF (2008) Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J Phycol 44: 467–477. PubMed
Stancheva R, Sheath RG, Hall JD (2012) Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol 48: 409–422. PubMed
Nylander JAA (2004) MrModeltest 2.3. Distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Rambaut A (2009) FigTree, Tree Figure drawing tool. Available: http://tree.bio.ed.ac.uk/software/figtree/.
Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D. Thesis, University of Texas at Austin, USA.
Swofford DL (2002) PAUP*4.0b10. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, USA.
Karsten U, Herburger K, Holzinger A (2014) Dehydration, temperature and light tolerance in members of the aeroterrestrial green algal genus Interfilum (Streptophyta) from biogeographically different temperate soils. J Phycol 50: 804–816. PubMed PMC
Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339–363.
Ellis EA (2006) Solutions to the problem of substitution of ERL 4221 for vinyl cyclo-hexene dioxide in Spurr low viscosity embedding formulations. Micros Today 14: 32–33.
Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, et al. (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6: e25851. PubMed PMC
Shiratake T, Sato A, Minoda A, Tsuzuki M, Sato N (2013) Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri . PLoS One 8: e79630. PubMed PMC
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, et al. (2014) Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense. PLoS One 9: e110630. PubMed PMC
Holzinger A, Lütz C, Karsten U (2011) Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol 47: 591–602. PubMed
Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, et al. (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36: 1363–1378. PubMed
Cruz de Carvalho R, Bernardes ds Silva A, Soares R, Almeida AM, Coelho AV, et al. (2014) Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37: 1499–1515. PubMed
Darling RB, Friedmann EI, Broady PA (1987) Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and reponse to temperature. J Phycol 23: 598–607. PubMed
Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, et al. (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol J 21: 183–191.
Bartels D, Lüttge U, Beck E (2011) Introduction. In: Lüttge U, Beck E, Bartels D, editors. Plant desiccation tolerance. Springer. pp. 3–10.
Post A, Larkum AWD (1993) UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquat Bot 45: 231–243.
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51: 659–668. PubMed
Štastný J (2010) Desmids (Conjugatophyceae, Viridiplantae) from the Czech Republic; new and rare taxa, distribution, ecology. Fottea 10: 1–74.
Fritsch FE (1916) The morphology and ecology of an extreme terrestrial form of Zygnema ericetorum (Kutz.) Hass. Ann Bot 30: 135–149.
Holzinger A, Tschaikner A, Remias D (2010) Cytoarchitecture of the desiccation-tolerant green alga Zygogonium ericetorum . Protoplasma 243: 15–24. PubMed
Aigner S, Remias D, Karsten U, Holzinger A (2013) Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J Phycol 49: 648–660. PubMed PMC
Stancheva R, Hall JD, Herburger K, Lewis LA, McCourt RM, et al. (2014) Phylogenetic position of Zygogonium ericetorum (Zygnematophyceae, Charophyta) from a high alpine habitat and ultrastructural characterization of unusual aplanospores. J Phycol 50: 790–803. PubMed PMC
Seasonal Dynamics of Zygnema (Zygnematophyceae) Mats from the Austrian Alps
Evolutionarily Distant Streptophyta Respond Differently to Genotoxic Stress
GENBANK
LN611664, LN611665, LN611666, LN611667