Desiccation tolerance in peatland desmids: a comparative study of Micrasterias thomasiana and Staurastrum hirsutum (Zygnematophyceae)
Status Publisher Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-20989S
Grantová Agentura České Republiky
PubMed
40180684
DOI
10.1007/s00709-025-02061-1
PII: 10.1007/s00709-025-02061-1
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll fluorescence, Desiccation tolerance, Desmids, Peat bog, Ultrastructure, Zygnematophyceae,
- Publikační typ
- časopisecké články MeSH
Desmids are valuable bioindicators in peatland ecosystems due to their sensitivity to environmental changes. In temperate and boreal wetlands, seasonal desiccation of aquatic habitats, which is increasing in frequency and severity due to ongoing climate change, is currently considered a key factor structuring the distribution of individual taxa. In this study, the desiccation tolerance of Micrasterias thomasiana and Staurastrum hirsutum isolated from contrasting hydrological environments in the peatland habitats of the Ore Mountains, Czech Republic, is investigated. Using controlled experimental conditions, we subjected both young, actively growing and old, mature cultures to four different desiccation treatments and evaluated morphology and photosynthetic performance. Our results showed that young and old cultures of both species exhibited a very similar photophysiological response. Severe desiccation led to an irreversible decline in the effective quantum yield of photosystem II in both species, resulting in cell death. Mild drought stress allowed the cultures to recover, indicating that the stress severity determines the recovery potential. Finally, prolonged desiccation resulted in irreversible damage in older cultures of both species, emphasizing the limited desiccation resilience of desmids. We observed similarities in morphology with Zygnema "pre-akinetes," but in contrast to these resilient cells, the old cells of M. thomasiana and S. hirsutum did not survive the harsher desiccation conditions. Long-term mild desiccation revealed a higher resistance of S. hirsutum, probably due to the protective role of its dense mucilage. In nature, these two species usually inhabit localities with low desiccation risk or avoid and mitigate desiccation stress through localized survival strategies.
Zobrazit více v PubMed
Aigner S, Remias D, Karsten U, Holzinger A (2013) Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J Phycol 49:648–660. https://doi.org/10.1111/jpy.12075 PubMed DOI PMC
Alpert P, Oliver MJ (2002) Drying without dying. In: Black M, Prichard HW (eds) Desiccation and survival in plants: drying without dying, CAB International, Wallingford UK, pp 3–43
Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, London
Arzac MI, Miranda-Apodaca J, Gasulla F et al (2023) Acquisition of desiccation tolerance unveiled: polar lipid profiles of streptophyte algae offer insights. Physiol Plantarum 175:e14073. https://doi.org/10.1111/ppl.14073 DOI
Breeuwer A, Robroek BJM, Limpens J et al (2009) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339. https://doi.org/10.1016/j.baae.2008.05.005 DOI
Čížková H, Květ J, Comín FA et al (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26. https://doi.org/10.1007/s00027-011-0233-4 DOI
Coesel PFM (1982) Structural characteristics and adaptations of desmid communities. J Ecol 70:163–177. https://doi.org/10.2307/2259871 DOI
Coesel PFM (2001) A method for quantifying conservation value in lentic freshwater habitats using desmids as indicator organisms. Biodivers Conserv 10:177–187. https://doi.org/10.1023/A:1008985018197 DOI
Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death upon H PubMed DOI
Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30:1240–1255. https://doi.org/10.1111/j.1365-3040.2007.01704.x PubMed DOI
Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stan Sect A 81A:89. https://doi.org/10.6028/jres.081A.011 DOI
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electr 4:1–9
Hawes I, Davey MC (1989) Use of the fluorochrome Auramine O for determination of cell viability in filamentous and thalloid algae. Phycologia 28:518–520. https://doi.org/10.2216/i0031-8884-28-4-518.1 DOI
Herburger K, Lewis LA, Holzinger A (2015) Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma 252:571–589. https://doi.org/10.1007/s00709-014-0703-3 PubMed DOI
Herburger K, Xin A, Holzinger A (2019) Homogalacturonan accumulation in cell walls of the green alga Zygnema sp. (Charophyta) increases desiccation resistance. Front Plant Sci 10:540. https://doi.org/10.3389/fpls.2019.00540 PubMed DOI PMC
Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00327
Holzinger A, Pichrtová M (2016) Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00678
Karsten U, Holzinger A (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol 63:51–63. https://doi.org/10.1007/s00248-011-9924-6 PubMed DOI
Lütz-Meindl U (2016) Micrasterias as a model system in plant cell biology. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00999
McLean RJ, Pessoney GF (1971) Formation and resistance of akinetes of Zygnema. In: Brown RM (ed) Parker BC. Contributions in phycology, Allen, Lawrence KS, pp 145–152
Meindl U, Wittmann-Pinegger D, Kiermayer O (1989) Cell multiplication and ultrastructure of Micrasterias denticulata (Desmidiaceae) grown under salt stress. Plant Syst Evol 164:197–208. https://doi.org/10.1007/BF00940437 DOI
Morison MO, Sheath RG (1985) Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24:129–145. https://doi.org/10.2216/i0031-8884-24-2-129.1 DOI
Nagao M, Arakawa K, Takezawa D et al (1999) Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae) in relation to freezing tolerance. J Plant Res 112:163–174. https://doi.org/10.1007/PL00013870 DOI
Neustupa J, Černá K, Št’astný J (2011) The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodivers Conserv 20:1695–1711. https://doi.org/10.1007/s10531-011-0055-7 DOI
Neustupa J, Stastny J, Woodard K (2023) Ecological monitoring of disturbed mountain peatlands: an analysis based on desmids. Biodivers Conserv 32:2671–2691. https://doi.org/10.1007/s10531-023-02624-9 DOI
Neustupa J, Woodard K (2024) The effects of temperature on plasticity, shape symmetry and seasonal variation in the freshwater benthic green microalga Micrasterias thomasiana. Aquat Ecol 58:601–615. https://doi.org/10.1007/s10452-024-10093-7 DOI
Neustupa J, Woodard K, Kulichová J, Němcová Y (2024) Effects of summer desiccation on desmid microflora of ombrogenous pools in central-European mountain peat bogs. Preslia 96:209–221. https://doi.org/10.23855/preslia.2024.209 DOI
Oertel A, Aichinger N, Hochreiter R et al (2004) Analysis of mucilage secretion and excretion in Micrasterias (Chlorophyta) by means of immunoelectron microscopy and digital time lapse video microscopy. J Phycol 40:711–720. https://doi.org/10.1111/j.1529-8817.2004.03222.x DOI
Permann C, Gierlinger N, Holzinger A (2022) Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. Front Plant Sci 13:1080111. https://doi.org/10.3389/fpls.2022.1080111 PubMed DOI PMC
Pichrtová M, Hájek T, Elster J (2016) Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol 39:1653–1662. https://doi.org/10.1007/s00300-016-1889-y DOI
Pichrtová M, Kulichová J, Holzinger A (2014) Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS ONE 9:e113137. https://doi.org/10.1371/journal.pone.0113137 PubMed DOI PMC
Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x DOI
Rieseberg TP, Dadras A, Bergschmidt LIN et al (2023) Divergent responses in desiccation experiments in two ecophysiologically different Zygnematophyceae. Physiol Plantarum 175:e14056. https://doi.org/10.1111/ppl.14056 DOI
Rippin M, Becker B, Holzinger A (2017) Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol 58:2067–2084. https://doi.org/10.1093/pcp/pcx136 PubMed DOI
Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339. https://doi.org/10.1023/A:1007172424619 DOI
Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. https://doi.org/10.1016/S0022-5320(69)90033-1 PubMed DOI
Steiner P, Buchner O, Andosch A et al (2021) Winter survival of the unicellular green alga Micrasterias denticulata: insights from field monitoring and simulation experiments. Protoplasma 258:1335–1346. https://doi.org/10.1007/s00709-021-01682-6 PubMed DOI PMC
Tanneberger F, Tegetmeyer C, Busse S et al (2017) The peatland map of Europe. Mires and Peat 1–17. https://doi.org/10.19189/MaP.2016.OMB.264
Trumhová K, Holzinger A, Obwegeser S et al (2019) The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). Protoplasma 256:1681–1694. https://doi.org/10.1007/s00709-019-01404-z PubMed DOI PMC
Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, Van Weering JRT, Hamoen LW (2021) A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Communications Biology 4:306. https://doi.org/10.1038/s42003-021-01809-8 PubMed DOI PMC