The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes)
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 1951-B16
Austrian Science Fund
980518
Grant agency of the Charles University
I 1951
Austrian Science Fund FWF - Austria
2533632
Erasmus
15-34645L
Grantová Agentura České Republiky
ICM-2016-05737
AKTION
PubMed
31292718
PubMed Central
PMC6820810
DOI
10.1007/s00709-019-01404-z
PII: 10.1007/s00709-019-01404-z
Knihovny.cz E-zdroje
- Klíčová slova
- Auramine O, Chlorophyll fluorescence, Freezing, Ice, Live cell staining, Ultrastructure,
- MeSH
- chlorofyl chemie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Názvy látek
- chlorofyl MeSH
Green algae of the genus Zygnema form extensive mats and produce large amounts of biomass in shallow freshwater habitats. Environmental stresses including freezing may perturb these mats, which usually have only annual character. To estimate the limits of survival at subzero temperatures, freezing resistance of young Zygnema sp. (strain MP2011Skan) cells and pre-akinetes was investigated. Young, 2-week-old cultures were exposed to temperatures of 0 to - 14 °C at 2-K steps, whereas 8-month-old cultures were frozen from - 10 to - 70 °C at 10-K intervals. Cell viability after freezing was determined by 0.1% auramine O vital fluorescence staining and measurements of the effective quantum yield of photosystem II (ФPSII). At - 8 °C, the young vegetative cells were unable to recover from severe frost damage. But temperatures even slightly below zero (- 2 °C) negatively affected the cells' physiology. Single pre-akinetes could survive even at - 70 °C, but their LT50 value was - 26.2 °C. Severe freezing cytorrhysis was observed via cryo-microscopy at - 10 °C, a temperature found to be lethal for young cells. The ultrastructure of young cells appeared unchanged at - 2 °C, but severe damage to biomembranes and formation of small foamy vacuoles was observed at - 10 °C. Pre-akinetes did not show ultrastructural changes at - 20 °C; however, vacuolization increased, and gas bubbles appeared at - 70 °C. Our results demonstrate that the formation of pre-akinetes increases freezing resistance. This adaptation is crucial for surviving the harsh temperature conditions prevailing in the High Arctic in winter and a key feature in seasonal dynamics of Zygnema sp.
Zobrazit více v PubMed
Acker JP, McGann LE. Protective effect of intracellular ice during freezing? Cryobiology. 2003;46:197–202. doi: 10.1016/S0011-2240(03)00025-7. PubMed DOI
Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T. Specific and unspecific responses of plants to cold and drought stress. J Biosci. 2007;32:501–510. doi: 10.1007/s12038-007-0049-5. PubMed DOI
Bischoff HW, Bold HC. Some soil algae from Enchanted Rock and related algal species. Phycological Studies IV, Publication No. 6318. Austin: University of Texas; 1963.
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018;10:427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC
Buchner O, Neuner G. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium. Protoplasma. 2010;243:63–71. doi: 10.1007/s00709-009-0053-8. PubMed DOI
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc Biol Sci. 2016;283:20152802. doi: 10.1098/rspb.2015.2802. PubMed DOI PMC
Davey MC. The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 1989;10:29–36. doi: 10.1007/BF00238287. DOI
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci. 2016;21:467–476. doi: 10.1016/j.tplants.2016.01.021. PubMed DOI
de Vries J, Curtis BA, Gould SB, Archibald JM. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci. 2018;115(15):E3471–E3480. doi: 10.1073/pnas.1719230115. PubMed DOI PMC
Delwiche CF, Graham LE, Thomson N. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science. 1989;245:399–401. doi: 10.1126/science.245.4916.399. PubMed DOI
Elster J. Algal versatility in various extreme environments. In: Sekbach J, editor. Enigmatic microorganisms and life in extreme environments. Springer. Netherlands: Durdrecht; 1999. pp. 215–227.
Elster J, Komárek O. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct Sci. 2003;15:189–201. doi: 10.1017/S0954102003001226. DOI
Elster J, Svoboda J, Komárek J, Marvan P. Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79 N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl Algol Stud. 1997;85:57–93.
Elster J, Degma P, Kováčik Ľ, Valentová L, Šramková K, Batista Pereira A. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia. 2008;63:843–851. doi: 10.2478/s11756-008-0111-2. DOI
Garber MP, Steponkus PL. Alterations in chloroplast thylakoids during an in vitro freeze-thaw cycle. Plant Physiol. 1976;57:673–680. doi: 10.1104/pp.57.5.681. PubMed DOI PMC
Hacker J, Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA) Tree Physiol. 2007;27:1661–1670. doi: 10.1093/treephys/27.12.1661. PubMed DOI
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Harris N, Gates P. Fluorescence microscopy of the endomemnrane system of living plant cells. Plant Cell Environ. 1984;48:699–703. doi: 10.1111/1365-3040.ep11572462. DOI
Hawes I. Filamentous green algae in freshwater streams on Signy Island. Antarct Hydrobiol. 1989;172:1–18. doi: 10.1007/BF00031608. DOI
Hawes I. Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia. 1990;29:326–331. doi: 10.2216/i0031-8884-29-3-326.1. DOI
Hawes I, Davey MC. Use of the fluorochrome Auramine O for determination of cell viability in filanetous and thalloid algae. Phycologia. 1989;28:518–523. doi: 10.2216/i0031-8884-28-4-518.1. DOI
Herburger K, Holzinger A. Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. Plant Cell Physiol. 2015;56:2259–2270. doi: 10.1093/pcp/pcv139. PubMed DOI PMC
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma. 2015;252:571–589. doi: 10.1007/s00709-014-0703-3. PubMed DOI PMC
Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. Protoplasma. 2016;253:1309–1323. doi: 10.1007/s00709-015-0889-z. PubMed DOI PMC
Hobbs PV. Ice Physics. Oxford: Oxford University Press; 2010.
Holzinger A, Pichrtová M. Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front Plant Sci. 2016;7:678. doi: 10.3389/fpls.2016.00678. PubMed DOI PMC
Holzinger A, Roleda MY, Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI
Holzinger A, Lütz C, Karsten U. Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol. 2011;47:591–602. doi: 10.1111/j.1529-8817.2011.00980.x. PubMed DOI
Holzinger A, Albert A, Aigner S, Uhl J, Schmitt-Kopplin P, Trumhová K, Pichrtová M. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma. 2018;255:1239–1252. doi: 10.1007/s00709-018-1225-1. PubMed DOI PMC
Kaplan F, Lewis LA, Herburger K, Holzinger A. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron. 2013;44:317–330. doi: 10.1016/j.micron.2012.08.004. PubMed DOI PMC
Karsten U, Holzinger A. Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol. 2012;63:51–63. doi: 10.1007/s00248-011-9924-6. PubMed DOI
Knowles EJ, Castenholz RW. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol. 2008;66:261–270. doi: 10.1111/j.1574-6941.2008.00568.x. PubMed DOI
Kuprian E, Tuong TD, Pfaller K, Wagner J, Livingston DP, Neuner G. Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection. PLoS One. 2016;11:1–15. doi: 10.1371/journal.pone.0163160. PubMed DOI PMC
Láska K, Witoszová D, Prošek P. Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Pol Polar Res. 2012;33:297–318. doi: 10.2478/v10183-012-0025-0. DOI
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;31:1–46. doi: 10.1080/07352689.2011.615705. DOI
Lemieux C, Otis C, Turmel M. Comparative chloroplast genome analyses of Streptophyte green algae uncover major structural alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. Front Plant Sci. 2016;7:697. doi: 10.3389/fpls.2016.00697. PubMed DOI PMC
Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC Press; 2004. pp. 3–64.
McLean RJ, Pessoney GF. A large scale quasi-crystalline lamellar lattice in chloroplasts of the green alga Zygnema. J Cell Biol. 1970;45(3):522–531. doi: 10.1083/jcb.45.3.522. PubMed DOI PMC
Meindl U, Wittmann-Pinegger D, Kiermayer O. Cell multiplication and ultrastructure of Micrasterias denticulata (Desmidiaceae) grown under salt stress. Plant Syst Evol. 1989;164:197–208. doi: 10.1007/BF00940437. DOI
Morison MO, Sheath RG. Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia. 1985;24:129–145. doi: 10.2216/i0031-8884-24-2-129.1. DOI
Morris GJ, McGrath JJ. Intracellular ice nucleation and gas bubble formation in Spirogyra. Cryo-Letters. 1981;2:341–352.
Nagao M, Arakawa K, Takezawa D, Yoshida S, Fujikawa S. Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae ) in relation to freezing tolerance. J Plant Res. 1999;112:163–174. doi: 10.1007/PL00013870. DOI
Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ. 2008;31:872–885. doi: 10.1111/j.1365-3040.2008.01804.x. PubMed DOI
Pearce RS. Plant freezing and damage. Ann Bot. 2001;87:417–424. doi: 10.1006/anbo.2000.1352. DOI
Pichrtová M, Remias D, Lewis LA, Holzinger A. Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol. 2013;65:68–83. doi: 10.1007/s00248-012-0096-9. PubMed DOI PMC
Pichrtová M, Hájek T, Elster J. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol. 2014;89:270–280. doi: 10.1111/1574-6941.12288. PubMed DOI
Pichrtová M, Kulichová J, Holzinger A. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS ONE. 2014;9:e113137. doi: 10.1371/journal.pone.0113137. PubMed DOI PMC
Pichrtová M, Arc E, Stöggl W, Kranner I, Hájek T, Hackl H, Holzinger A. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiol Ecol. 2016;92:fiw096. doi: 10.1093/femsec/fiw096. PubMed DOI PMC
Pichrtová M, Hájek T, Elster J. Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol. 2016;39:1653–1662. doi: 10.1007/s00300-016-1889-y. DOI
Pichrtová M, Holzinger A, Kulichová J, Ryšánek D, Šoljaková T, Trumhová K, Němcová Y. Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) from Svalbard (High Arctic) Eur J Phycol. 2018;53(4):492–508. doi: 10.1080/09670262.2018.1476920. PubMed DOI PMC
Pickett-Heaps JD. Green algae: structure, reproduction and evolution in selected genera. Sunderland: Sinauer Associates; 1975.
Proctor VI. Storage and germination of Chara oospores. J Phycol. 1967;3:90–92. doi: 10.1111/j.1529-8817.1967.tb04638.x. PubMed DOI
Rasband WS. ImageJ. Bethesda: U.S. National Institutes of Health; 2016.
Rippin M, Becker B, Holzinger A. Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol. 2017;58:2067–2084. doi: 10.1093/pcp/pcx136. PubMed DOI PMC
Šabacká M, Elster J. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 2006;30:31–37. doi: 10.1007/s00300-006-0156-z. DOI
Sheath RG, Vis ML, Hambrook JA, Cole KM. Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. In: Kristiansen J, editor. Biogeography of freshwater algae. Developments in hydrobiology. Dordrecht: Springer; 1996. pp. 67–82.
Stancheva R, Hall JD, Sheath RG. Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol. 2012;48:409–422. doi: 10.1111/j.1529-8817.2012.01127.x. PubMed DOI
Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili JM, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH. The biology of polar regions. Oxford: Oxford University Press; 2008.
Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B. Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol. 2011;11:104. doi: 10.1186/1471-2148-11-104. PubMed DOI PMC
Zhong B, Xi Z, Goremykin VV, Fong R, McLenachan PA, Novis PM, Davis CC, Penny D. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol Biol Evol. 2014;31:177–183. doi: 10.1093/molbev/mst200. PubMed DOI
Seasonal Dynamics of Zygnema (Zygnematophyceae) Mats from the Austrian Alps
Experimental freezing of freshwater pennate diatoms from polar habitats