The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes)

. 2019 Nov ; 256 (6) : 1681-1694. [epub] 20190710

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31292718

Grantová podpora
I 1951-B16 Austrian Science Fund
980518 Grant agency of the Charles University
I 1951 Austrian Science Fund FWF - Austria
2533632 Erasmus
15-34645L Grantová Agentura České Republiky
ICM-2016-05737 AKTION

Odkazy

PubMed 31292718
PubMed Central PMC6820810
DOI 10.1007/s00709-019-01404-z
PII: 10.1007/s00709-019-01404-z
Knihovny.cz E-zdroje

Green algae of the genus Zygnema form extensive mats and produce large amounts of biomass in shallow freshwater habitats. Environmental stresses including freezing may perturb these mats, which usually have only annual character. To estimate the limits of survival at subzero temperatures, freezing resistance of young Zygnema sp. (strain MP2011Skan) cells and pre-akinetes was investigated. Young, 2-week-old cultures were exposed to temperatures of 0 to - 14 °C at 2-K steps, whereas 8-month-old cultures were frozen from - 10 to - 70 °C at 10-K intervals. Cell viability after freezing was determined by 0.1% auramine O vital fluorescence staining and measurements of the effective quantum yield of photosystem II (ФPSII). At - 8 °C, the young vegetative cells were unable to recover from severe frost damage. But temperatures even slightly below zero (- 2 °C) negatively affected the cells' physiology. Single pre-akinetes could survive even at - 70 °C, but their LT50 value was - 26.2 °C. Severe freezing cytorrhysis was observed via cryo-microscopy at - 10 °C, a temperature found to be lethal for young cells. The ultrastructure of young cells appeared unchanged at - 2 °C, but severe damage to biomembranes and formation of small foamy vacuoles was observed at - 10 °C. Pre-akinetes did not show ultrastructural changes at - 20 °C; however, vacuolization increased, and gas bubbles appeared at - 70 °C. Our results demonstrate that the formation of pre-akinetes increases freezing resistance. This adaptation is crucial for surviving the harsh temperature conditions prevailing in the High Arctic in winter and a key feature in seasonal dynamics of Zygnema sp.

Zobrazit více v PubMed

Acker JP, McGann LE. Protective effect of intracellular ice during freezing? Cryobiology. 2003;46:197–202. doi: 10.1016/S0011-2240(03)00025-7. PubMed DOI

Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T. Specific and unspecific responses of plants to cold and drought stress. J Biosci. 2007;32:501–510. doi: 10.1007/s12038-007-0049-5. PubMed DOI

Bischoff HW, Bold HC. Some soil algae from Enchanted Rock and related algal species. Phycological Studies IV, Publication No. 6318. Austin: University of Texas; 1963.

Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 2018;10:427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC

Buchner O, Neuner G. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium. Protoplasma. 2010;243:63–71. doi: 10.1007/s00709-009-0053-8. PubMed DOI

Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc Biol Sci. 2016;283:20152802. doi: 10.1098/rspb.2015.2802. PubMed DOI PMC

Davey MC. The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 1989;10:29–36. doi: 10.1007/BF00238287. DOI

de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci. 2016;21:467–476. doi: 10.1016/j.tplants.2016.01.021. PubMed DOI

de Vries J, Curtis BA, Gould SB, Archibald JM. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci. 2018;115(15):E3471–E3480. doi: 10.1073/pnas.1719230115. PubMed DOI PMC

Delwiche CF, Graham LE, Thomson N. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science. 1989;245:399–401. doi: 10.1126/science.245.4916.399. PubMed DOI

Elster J. Algal versatility in various extreme environments. In: Sekbach J, editor. Enigmatic microorganisms and life in extreme environments. Springer. Netherlands: Durdrecht; 1999. pp. 215–227.

Elster J, Komárek O. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct Sci. 2003;15:189–201. doi: 10.1017/S0954102003001226. DOI

Elster J, Svoboda J, Komárek J, Marvan P. Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79 N, Central Ellesmere Island, Canada. Arch Hydrobiol Suppl Algol Stud. 1997;85:57–93.

Elster J, Degma P, Kováčik Ľ, Valentová L, Šramková K, Batista Pereira A. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia. 2008;63:843–851. doi: 10.2478/s11756-008-0111-2. DOI

Garber MP, Steponkus PL. Alterations in chloroplast thylakoids during an in vitro freeze-thaw cycle. Plant Physiol. 1976;57:673–680. doi: 10.1104/pp.57.5.681. PubMed DOI PMC

Hacker J, Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA) Tree Physiol. 2007;27:1661–1670. doi: 10.1093/treephys/27.12.1661. PubMed DOI

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Harris N, Gates P. Fluorescence microscopy of the endomemnrane system of living plant cells. Plant Cell Environ. 1984;48:699–703. doi: 10.1111/1365-3040.ep11572462. DOI

Hawes I. Filamentous green algae in freshwater streams on Signy Island. Antarct Hydrobiol. 1989;172:1–18. doi: 10.1007/BF00031608. DOI

Hawes I. Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia. 1990;29:326–331. doi: 10.2216/i0031-8884-29-3-326.1. DOI

Hawes I, Davey MC. Use of the fluorochrome Auramine O for determination of cell viability in filanetous and thalloid algae. Phycologia. 1989;28:518–523. doi: 10.2216/i0031-8884-28-4-518.1. DOI

Herburger K, Holzinger A. Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. Plant Cell Physiol. 2015;56:2259–2270. doi: 10.1093/pcp/pcv139. PubMed DOI PMC

Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma. 2015;252:571–589. doi: 10.1007/s00709-014-0703-3. PubMed DOI PMC

Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. Protoplasma. 2016;253:1309–1323. doi: 10.1007/s00709-015-0889-z. PubMed DOI PMC

Hobbs PV. Ice Physics. Oxford: Oxford University Press; 2010.

Holzinger A, Pichrtová M. Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front Plant Sci. 2016;7:678. doi: 10.3389/fpls.2016.00678. PubMed DOI PMC

Holzinger A, Roleda MY, Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI

Holzinger A, Lütz C, Karsten U. Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol. 2011;47:591–602. doi: 10.1111/j.1529-8817.2011.00980.x. PubMed DOI

Holzinger A, Albert A, Aigner S, Uhl J, Schmitt-Kopplin P, Trumhová K, Pichrtová M. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma. 2018;255:1239–1252. doi: 10.1007/s00709-018-1225-1. PubMed DOI PMC

Kaplan F, Lewis LA, Herburger K, Holzinger A. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron. 2013;44:317–330. doi: 10.1016/j.micron.2012.08.004. PubMed DOI PMC

Karsten U, Holzinger A. Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol. 2012;63:51–63. doi: 10.1007/s00248-011-9924-6. PubMed DOI

Knowles EJ, Castenholz RW. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol. 2008;66:261–270. doi: 10.1111/j.1574-6941.2008.00568.x. PubMed DOI

Kuprian E, Tuong TD, Pfaller K, Wagner J, Livingston DP, Neuner G. Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection. PLoS One. 2016;11:1–15. doi: 10.1371/journal.pone.0163160. PubMed DOI PMC

Láska K, Witoszová D, Prošek P. Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Pol Polar Res. 2012;33:297–318. doi: 10.2478/v10183-012-0025-0. DOI

Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;31:1–46. doi: 10.1080/07352689.2011.615705. DOI

Lemieux C, Otis C, Turmel M. Comparative chloroplast genome analyses of Streptophyte green algae uncover major structural alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. Front Plant Sci. 2016;7:697. doi: 10.3389/fpls.2016.00697. PubMed DOI PMC

Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC Press; 2004. pp. 3–64.

McLean RJ, Pessoney GF. A large scale quasi-crystalline lamellar lattice in chloroplasts of the green alga Zygnema. J Cell Biol. 1970;45(3):522–531. doi: 10.1083/jcb.45.3.522. PubMed DOI PMC

Meindl U, Wittmann-Pinegger D, Kiermayer O. Cell multiplication and ultrastructure of Micrasterias denticulata (Desmidiaceae) grown under salt stress. Plant Syst Evol. 1989;164:197–208. doi: 10.1007/BF00940437. DOI

Morison MO, Sheath RG. Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia. 1985;24:129–145. doi: 10.2216/i0031-8884-24-2-129.1. DOI

Morris GJ, McGrath JJ. Intracellular ice nucleation and gas bubble formation in Spirogyra. Cryo-Letters. 1981;2:341–352.

Nagao M, Arakawa K, Takezawa D, Yoshida S, Fujikawa S. Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae ) in relation to freezing tolerance. J Plant Res. 1999;112:163–174. doi: 10.1007/PL00013870. DOI

Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ. 2008;31:872–885. doi: 10.1111/j.1365-3040.2008.01804.x. PubMed DOI

Pearce RS. Plant freezing and damage. Ann Bot. 2001;87:417–424. doi: 10.1006/anbo.2000.1352. DOI

Pichrtová M, Remias D, Lewis LA, Holzinger A. Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microb Ecol. 2013;65:68–83. doi: 10.1007/s00248-012-0096-9. PubMed DOI PMC

Pichrtová M, Hájek T, Elster J. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol. 2014;89:270–280. doi: 10.1111/1574-6941.12288. PubMed DOI

Pichrtová M, Kulichová J, Holzinger A. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS ONE. 2014;9:e113137. doi: 10.1371/journal.pone.0113137. PubMed DOI PMC

Pichrtová M, Arc E, Stöggl W, Kranner I, Hájek T, Hackl H, Holzinger A. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiol Ecol. 2016;92:fiw096. doi: 10.1093/femsec/fiw096. PubMed DOI PMC

Pichrtová M, Hájek T, Elster J. Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol. 2016;39:1653–1662. doi: 10.1007/s00300-016-1889-y. DOI

Pichrtová M, Holzinger A, Kulichová J, Ryšánek D, Šoljaková T, Trumhová K, Němcová Y. Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) from Svalbard (High Arctic) Eur J Phycol. 2018;53(4):492–508. doi: 10.1080/09670262.2018.1476920. PubMed DOI PMC

Pickett-Heaps JD. Green algae: structure, reproduction and evolution in selected genera. Sunderland: Sinauer Associates; 1975.

Proctor VI. Storage and germination of Chara oospores. J Phycol. 1967;3:90–92. doi: 10.1111/j.1529-8817.1967.tb04638.x. PubMed DOI

Rasband WS. ImageJ. Bethesda: U.S. National Institutes of Health; 2016.

Rippin M, Becker B, Holzinger A. Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol. 2017;58:2067–2084. doi: 10.1093/pcp/pcx136. PubMed DOI PMC

Šabacká M, Elster J. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 2006;30:31–37. doi: 10.1007/s00300-006-0156-z. DOI

Sheath RG, Vis ML, Hambrook JA, Cole KM. Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. In: Kristiansen J, editor. Biogeography of freshwater algae. Developments in hydrobiology. Dordrecht: Springer; 1996. pp. 67–82.

Stancheva R, Hall JD, Sheath RG. Systematics of the genus Zygnema (Zygnematophyceae, Charophyta) from Californian watersheds. J Phycol. 2012;48:409–422. doi: 10.1111/j.1529-8817.2012.01127.x. PubMed DOI

Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili JM, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH. The biology of polar regions. Oxford: Oxford University Press; 2008.

Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B. Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol. 2011;11:104. doi: 10.1186/1471-2148-11-104. PubMed DOI PMC

Zhong B, Xi Z, Goremykin VV, Fong R, McLenachan PA, Novis PM, Davis CC, Penny D. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol Biol Evol. 2014;31:177–183. doi: 10.1093/molbev/mst200. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...