Experimental freezing of freshwater pennate diatoms from polar habitats
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20217
Grantová Agentura, Univerzita Karlova
LTAIN19139
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 67985939
Akademie Věd České Republiky
PubMed
33909137
DOI
10.1007/s00709-021-01648-8
PII: 10.1007/s00709-021-01648-8
Knihovny.cz E-zdroje
- Klíčová slova
- Diatoms, Freezing tolerance, Polar regions, Resting cells, Stress survival, Viability,
- MeSH
- chlorofyl MeSH
- ekosystém MeSH
- rozsivky * MeSH
- sladká voda MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
Diatoms are microalgae that thrive in a range of habitats worldwide including polar areas. Remarkably, non-marine pennate diatoms do not create any morphologically distinct dormant stages that could help them to successfully face unfavourable conditions. Their survival is probably connected with the adaptation of vegetative cells to freezing and desiccation. Here we assessed the freezing tolerance of vegetative cells and vegetative-looking resting cells of 12 freshwater strains of benthic pennate diatoms isolated from polar habitats. To test the effect of various environmental factors, the strains were exposed to -20 °C freezing in four differently treated cultures: (1) vegetative cells growing in standard conditions in standard WC medium and (2) resting cells induced by cold and dark acclimation and resting cells, where (3) phosphorus or (4) nitrogen deficiency were used in addition to cold and dark acclimation. Tolerance was evaluated by measurement of basal cell fluorescence of chlorophyll and determination of physiological cell status using a multiparameter fluorescent staining. Four strains out of 12 were able to tolerate freezing in at least some of the treatments. The minority of cells appeared to be active immediately after thawing process, while most cells were inactive, injured or dead. Overall, the results showed a high sensitivity of vegetative and resting cells to freezing stress among strains originating from polar areas. However, the importance of resting cells for survival was emphasized by a slight but statistically significant increase of freezing tolerance of nutrient-depleted cells. Low numbers of surviving cells in our experimental setup could indicate their importance for the overwintering of diatom populations in harsh polar conditions.
Department of Ecology Faculty of Science Charles University Viničná 7 128 44 Prague 2 Czech Republic
Institute of Botany of the Czech Academy of Sciences Dukelská 135 379 82 Třeboň Czech Republic
Zobrazit více v PubMed
Agrawal SC (2009) Factors affecting spore germination in algae - review. Folia Microbiol 54:273–302. https://doi.org/10.1007/s12223-009-0047-0 DOI
Antoniades D, Douglas MSV (2002) Characterization of high arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Can J Bot 80:50–58. https://doi.org/10.1139/b01-133 DOI
Arc E, Pichrtová M, Kranner I, Holzinger A (2020) Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. J Exp Bot 71:3314–3320. https://doi.org/10.1093/jxb/eraa123
Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol 26:396–403. https://doi.org/10.1007/s00300-003-0503-2 DOI
Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219. https://doi.org/10.1016/j.cryobiol.2011.08.006 PubMed DOI
Bertrand A, Castonguay Y (2003) Plant adaptations to overwintering stresses and implications of climate change. Can J Bot 81:1145–1152. https://doi.org/10.1139/b03-129 DOI
Billi D, Caiola MG (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol 133:563–571. https://doi.org/10.1111/j.1469-8137.1996.tb01925.x DOI
Brutemark A, Rengefors K, Anderson NJ (2006) An experimental investigation of phytoplankton nutrient limitation in two contrasting low Arctic lakes. Polar Biol 29:487–494. https://doi.org/10.1007/s00300-005-0079-0 DOI
Cañavate JP, Lubian LM (1995) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar Biol 124:325–334. https://doi.org/10.1007/BF00347136 DOI
Cañavate JP, Lubian LM (1997) Effects of slow and rapid warming on the cryopreservation of marine microalgae. Cryobiology 35:143–149. https://doi.org/10.1006/cryo.1997.2031 DOI
Consalvey M, Paterson DM, Underwood GJC (2004) The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Res 19:181–202. https://doi.org/10.1080/0269249X.2004.9705870
Consalvey M, Perkins RG, Paterson DM, Underwood GJC (2005) PAM fluorescence: a beginners guide for benthic diatomists. Diatom Res 20:1–22. https://doi.org/10.1080/0269249X.2005.9705619 DOI
Cremer H, Gore D, Hultzsch N, Melles M, Wagner B (2004) The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biol 27:513–531. https://doi.org/10.1007/s00300-004-0624-2 DOI
Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10. https://doi.org/10.1042/bj2420001 PubMed DOI PMC
Davey MC (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36. https://doi.org/10.1007/BF00238287 DOI
Davey MC (1991) Effects of physical factors on the survival and growth of Antarctic terrestrial algae. Br Phycol J 26:315–325. https://doi.org/10.1080/00071619100650281 DOI
Davey MC, Rothery P (1992) Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar Biol 12:595–601. https://doi.org/10.1007/BF00236982 DOI
Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388. https://doi.org/10.1017/S0954102092000567 DOI
Edlund MB, Stoermer EF, Taylor CM (1996) Aulacoseira skvortzowii sp. nov. (Bacillariophyta), a poorly understood diatom from Lake Baikal, Russia 1. J Phycol 32:165–175. https://doi.org/10.1111/j.0022-3646.1996.00165.x DOI
Ellegaard M, Ribeiro S (2018) The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biol Rev 93:166–183. https://doi.org/10.1111/brv.12338 PubMed DOI
Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Geoecology of Antarctic Ice-Free Coastal Landscapes. Springer-Verlag, Berlin, pp 303–326
Elster J, Benson EE (2004) Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State. Taylor and Francis, London, pp 111–150
Elster J, Degma P, Kováčik L, Valentová L, Šramková K, Batista Pereira A (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63:843–851. https://doi.org/10.2478/s11756-008-0111-2
Ettl H, Gärtner G (2013) Syllabus der Boden-, Luft- und Flechtenalgen. Springer-Verlag, Berlin
Evans JH (1959) The survival of freshwater algae during dry periods: Part II. Drying experiments: Part III. Stratification of algae in pond margin litter and mud. J Ecol 47:55–81. https://doi.org/10.2307/2257248 DOI
Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol 98:4805–4816. https://doi.org/10.1007/s00253-014-5694-7 PubMed DOI PMC
Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x DOI
Gupta S, Agrawal SC (2008) Vegetative survival of some wall and soil blue-green algae under stress conditions. Folia Microbiol 53:343–350. https://doi.org/10.1007/s12223-008-0053-7 DOI
Gwak IG, sic Jung W, Kim HJ et al (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639. https://doi.org/10.1007/s10126-009-9250-x DOI
Hawes I (1989) Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia 172:1–18. https://doi.org/10.1007/BF00031608 DOI
Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia 29:326–331. https://doi.org/10.2216/i0031-8884-29-3-326.1 DOI
Hawes I, Davey MC (1989) Use of the fluorochrome Auramine O for determination of cell viability in filamentous and thalloid algae. Phycologia 28:518–520. https://doi.org/10.2216/i0031-8884-28-4-518.1 DOI
Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol 12:587–594. https://doi.org/10.1007/BF00236981 DOI
Hejduková E, Pinseel E, Vanormelingen P, Nedbalová L, Elster J, Vyverman W, Sabbe K (2019) Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia 58:1–11. https://doi.org/10.1080/00318884.2019.1591835 DOI
Hejduková E, Elster J, Nedbalová L (2020) Annual cycle of freshwater diatoms in the High Arctic revealed by multiparameter fluorescent staining. Microb Ecol 80:559–572. https://doi.org/10.1007/s00248-020-01521-w PubMed DOI
Hogan EJ, McGowan S, Anderson NJ (2014) Nutrient limitation of periphyton growth in Arctic lakes in south-west Greenland. Polar Biol 37:1331–1342. https://doi.org/10.1007/s00300-014-1524-8 DOI
Hostetter HP, Hoshaw RW (1970) Environmental factors affecting resistance to desiccation in the diatom Stauroneis anceps. Am J Bot 57:512. https://doi.org/10.2307/2441048
Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416. https://doi.org/10.1111/j.1529-8817.2006.00208.x DOI
Jewson DH, Granin NG, Zhdanov AA, Gorbunova LA, Bondarenko NA, Gnatovsky RY (2008) Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnol Oceanogr 53:1125–1136. https://doi.org/10.4319/lo.2008.53.3.1125 DOI
Jones VJ (1996) The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodivers Conserv 5:1433–1449. https://doi.org/10.1007/BF00051986 DOI
Kim GH, Klochkova TA, Kang SH (2008) Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic sea area). J Environ Biol 29:485–491 PubMed
Kopalová K, Nedbalová L, Nývlt D, Elster J, van de Vijver B (2013) Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol 36:933–948. https://doi.org/10.1007/s00300-013-1317-5 DOI
Kopalová K, Soukup J, Kohler TJ, Roman M, Coria SH, Vignoni PA, Lecomte KL, Nedbalová L, Nývlt D, Lirio JM (2019) Habitat controls on limno-terrestrial diatom communities of Clearwater Mesa, James Ross Island, Maritime Antarctica. Polar Biol 42:1595–1613. https://doi.org/10.1007/s00300-019-02547-8 DOI
Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res Part I Oceanogr Res Pap 49:2163–2181. https://doi.org/10.1016/S0967-0637(02)00122-X
Kuwata A, Takahashi M (1999) Survival and recovery of resting spores and resting cells of the marine planktonic diatom Chaetoceros pseudocurvisetus under fluctuating nitrate conditions. Mar Biol 134:471–478. https://doi.org/10.1007/s002270050563 DOI
Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Prog Ser 102:245–256. https://doi.org/10.3354/meps102245 DOI
Láska K, Witoszová D, Prošek P (2012) Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Polish Polar Res 33:297–318. https://doi.org/10.2478/v10183 DOI
Levine MA, Whalen SC (2001) Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455:189–201. https://doi.org/10.1023/A:1011954221491 DOI
Lewin JC (1953) Heterotrophy in diatoms. J Gen Microbiol 9:305–313. https://doi.org/10.1099/00221287-9-2-305 PubMed DOI
Livingstone D, Jaworski GHM (1980) The viability of akinetes of blue-green algae recovered from the sediments of Rostherne Mere. Br Phycol J 15:357–364. https://doi.org/10.1080/00071618000650361 DOI
Lund JWG (1954) The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kutz. subsp. subarctica O. Müll. J Ecol 42:151–179. https://doi.org/10.2307/2256984 DOI
Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3:56–80. https://doi.org/10.3390/biology3010056
Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495. https://doi.org/10.2216/i0031-8884-38-6-437.1 DOI
Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369. https://doi.org/10.1085/jgp.47.2.347 PubMed DOI PMC
Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys 247:125–142. https://doi.org/10.1152/ajpcell.1984.247.3.c125 DOI
McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861. https://doi.org/10.1046/j.1529-8817.2000.00031.x DOI
McQuoid MR, Hobson LA (1995) Importance of resting stages in diatom seasonal succession. J Phycol 31:44–50. https://doi.org/10.1111/j.0022-3646.1995.00044.x DOI
McQuoid MR, Hobson LA (1996) Diatom resting stages. J Phycol 32:889–902. https://doi.org/10.1111/j.0022-3646.1996.00889.x DOI
Mekhalfi M, Amara S, Robert S, Carrière F, Gontero B (2014) Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie 101:21–30. https://doi.org/10.1016/j.biochi.2013.12.004 PubMed DOI
Meryman HT (1974) Freezing injury and its prevention in living cells. Annu Rev Biophys Bioeng 3:341–363. https://doi.org/10.1146/annurev.bb.03.060174.002013 PubMed DOI
Mock T, Kroon BMA (2002a) Photosynthetic energy conversion under extreme conditions - I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51. https://doi.org/10.1016/S0031-9422(02)00216-9 PubMed DOI
Mock T, Kroon BMA (2002b) Photosynthetic energy conversion under extreme conditions - II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60. https://doi.org/10.1016/S0031-9422(02)00215-7 PubMed DOI
Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741. https://doi.org/10.1111/j.1529-8817.2004.03224.x DOI
Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, Allen AE, Dupont CL, Frickenhaus S, Maumus F, Veluchamy A, Wu T, Barry KW, Falciatore A, Ferrante MI, Fortunato AE, Glöckner G, Gruber A, Hipkin R, Janech MG, Kroth PG, Leese F, Lindquist EA, Lyon BR, Martin J, Mayer C, Parker M, Quesneville H, Raymond JA, Uhlig C, Valas RE, Valentin KU, Worden AZ, Armbrust EV, Clark MD, Bowler C, Green BR, Moulton V, van Oosterhout C, Grigoriev IV (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540. https://doi.org/10.1038/nature20803 PubMed DOI
Moore JW (1974) Benthic algae of Southern Baffin Island: II. The epipelic communities in temporary ponds. J Ecol 62:809–819. https://doi.org/10.1111/j.1529-8817.1974.tb02739.x DOI
Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252. https://doi.org/10.1128/MMBR.70.1.222 PubMed DOI PMC
Morin PI, Lacour T, Grondin PL, Bruyant F, Ferland J, Forget MH, Massicotte P, Donaher N, Campbell DA, Lavaud J, Babin M (2019) Response of the sea-ice diatom Fragilariopsis cylindrus to simulated polar night darkness and return to light. Limnol Oceanogr 65:1041–1060. https://doi.org/10.1002/lno.11368 DOI
Nagao M, Arakawa K, Takezawa D, Yoshida S, Fujikawa S (1999) Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae) in relation to freezing tolerance. J Plant Res 112:163–174. https://doi.org/10.1007/PL00013870 DOI
Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885. https://doi.org/10.1111/j.1365-3040.2008.01804.x PubMed DOI
Nedbalová L, Nývlt D, Kopáček J, Šobr M, Elster J (2013) Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarct Sci 25:358–372. https://doi.org/10.1017/S0954102012000934 DOI
Nichols DS, Nichols PD, Sullivan CW (1993) Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarct Sci 5:271–278. https://doi.org/10.1017/S0954102093000367 DOI
Norwegian Polar Institute Map data Svalbard 1:1 000 000 (2019) https://data.npolar.no . Accessed 10 Oct 2019
Pahl SL, Lewis DM, Chen F, King KD (2010) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J Biosci Bioeng 109:235–239. https://doi.org/10.1016/j.jbiosc.2009.08.480 PubMed DOI
Pelusi A, Santelia ME, Benevenuto G et al (2020) The diatom Chaetoceros socialis: spore formation and preservation. Eur J Phycol 55:1–10. https://doi.org/10.1080/09670262.2019.1632935 DOI
Perkins RG, Lavaud J, Serôdio J, Mouget JL, Cartaxana P, Rosa P, Barille L, Brotas V, Jesus BM (2010) Vertical cell movement is a primary response of intertidal benthic biofilms to increasing light dose. Mar Ecol Prog Ser 416:93–103. https://doi.org/10.3354/meps08787 DOI
Peters E (1996) Prolonged darkness and diatom mortality: II. marine temperate species. J Exp Mar Biol Ecol 207:43–58. https://doi.org/10.1016/0022-0981(95)02519-7 DOI
Peters E, Thomas DN (1996) Prolonged darkness and diatom mortality I: marine Antarctic species. J Exp Mar Biol Ecol 207:25–41. https://doi.org/10.1016/S0022-0981(96)02520-8 DOI
Pichrtová M, Hájek T, Elster J (2014a) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol 89:270–280. https://doi.org/10.1111/1574-6941.12288 PubMed DOI
Pichrtová M, Kulichová J, Holzinger A (2014b) Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS One 9:1–12. https://doi.org/10.1371/journal.pone.0113137 DOI
Pichrtová M, Hájek T, Elster J (2016) Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biol 39:1653–1662. https://doi.org/10.1007/s00300-016-1889-y DOI
Pinseel E, Hejduková E, Vanormelingen P, Kopalová K, Vyverman W, de Vijver BV (2017a) Pinnularia catenaborealis sp. nov. (Bacillariophyceae), a unique chain-forming diatom species from James Ross Island and Vega Island (maritime Antarctica). Phycologia 56:94–107. https://doi.org/10.2216/16-18.1 DOI
Pinseel E, Van de Vijver B, Kavan J et al (2017b) Diversity, ecology and community structure of the freshwater littoral diatom flora from Petuniabukta (Spitsbergen). Polar Biol 40:533–551. https://doi.org/10.1007/s00300-016-1976-0 DOI
Pla-Rabés S, Hamilton PB, Ballesteros E, Gavrilo M, Friedlander AM, Sala E (2016) The structure and diversity of freshwater diatom assemblages from Franz Josef Land Archipelago: a northern outpost for freshwater diatoms. PeerJ 2016:1–22. https://doi.org/10.7717/peerj.1705 DOI
Poulíčková A, Lysáková M, Hašler P, Lelková E (2008) Fishpond sediments - the source of palaeoecological information and algal ‘seed banks’. Nova Hedwigia 86:141–153. https://doi.org/10.1127/0029-5035/2008/0086-0141 DOI
Raymond JA (2000) Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23:721–729. https://doi.org/10.1007/s003000000147 DOI
Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181. https://doi.org/10.1016/S0011-2240(03)00023-3 PubMed DOI
Remias D (2012) Cell structure and physiology of alpine snow and ice algae. In: Lütz C (ed) Plants in Alpine Regions. Springer-Verlag, Vienna, pp 175–185 DOI
Round FE, Crawford RM, Mann DG (1990) Biology of diatoms. In: Round FE, Crawford RM, Mann DG (eds) Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, pp 1–130
Šabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol 30:31–37. https://doi.org/10.1007/s00300-006-0156-z DOI
Sánchez-Saavedra MDP (2006) The effect of cold storage on cell viability and composition of two benthic diatoms. Aquac Eng 34:131–136. https://doi.org/10.1016/j.aquaeng.2005.06.004 DOI
Schaub I, Wagner H, Graeve M, Karsten U (2017) Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard. Polar Biol 40:1425–1439. https://doi.org/10.1007/s00300-016-2067-y DOI
Schmid AM (1979) Influence of environmental factors on the development of the valve in diatoms. Protoplasma 99:99–115. https://doi.org/10.1007/BF01274072
Scientific Committee on Antarctic Research Antarctic Digital Database Version 7.0 (2020) https://www.add.scar.org/ . Accessed 27 Mar 2020
Sheath RG, Vis ML, Hambrook JA, Cole KM (1996) Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia 336:67–82. https://doi.org/10.1007/BF00010820 DOI
Sicko-Goad L, Stoermer EF, Kociolek JP (1989) Diatom resting cell rejuvenation and formation: time course, species records and distribution. J Plankton Res 11:375–389. https://doi.org/10.1093/plankt/11.2.375 DOI
Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591. https://doi.org/10.4319/lo.1998.43.7.1578 DOI
Smith DJ, Underwood GJC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. J Phycol 36:321–333. https://doi.org/10.1046/j.1529-8817.2000.99148.x DOI
Souffreau C, Vanormelingen P, Verleyen E, Sabbe K, Vyverman W (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324. https://doi.org/10.2216/09-30.1 DOI
Souffreau C, Vanormelingen P, Sabbe K, Vyverman W (2013a) Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia 52:14–24. https://doi.org/10.2216/12-087.1 DOI
Souffreau C, Vanormelingen P, Van de Vijver B et al (2013b) Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist 164:101–115. https://doi.org/10.1016/j.protis.2012.04.001 PubMed DOI
Stock W, Pinseel E, De Decker S et al (2018) Expanding the toolbox for cryopreservation of marine and freshwater diatoms. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-22460-0 DOI
Sugie K, Kuma K (2008) Resting spore formation in the marine diatom Thalassiosira nordenskioeldii under iron- and nitrogen-limited conditions. J Plankton Res 30:1245–1255. https://doi.org/10.1093/plankt/fbn080 DOI
Tashyreva D, Elster J (2015) Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria). Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00278 DOI
Tashyreva D, Elster J (2016) Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb Ecol 71:887–900. https://doi.org/10.1007/s00248-016-0732-x PubMed DOI
Tashyreva D, Elster J, Billi D (2013) A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0055283 DOI
Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430. https://doi.org/10.1007/s10811-004-5502-3 DOI
Teoh M-L, Phang S-M, Chu W-L (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297. https://doi.org/10.1007/s10811-012-9863-8 DOI
Trumhová K, Holzinger A, Obwegeser S, Neuner G, Pichrtová M (2019) The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). Protoplasma 256:1681–1694. https://doi.org/10.1007/s00709-019-01404-z PubMed DOI PMC
Tuchman NC, Schollett MA, Rier ST, Geddes P (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561:167–177. https://doi.org/10.1007/s10750-005-1612-4 DOI
Váczi P, Barták M, Nedbalová L, Elster J (2011) Comparative analysis of temperature courses in Antarctic lakes of different morphology: study from James Ross Island, Antarctica. Czech Polar Reports 1:78–87. https://doi.org/10.5817/cpr2011-2-7 DOI
Van de Vijver B, Beyens L (1999) Biogeography and ecology of freshwater diatoms in Subantarctica: a review. J Biogeogr 26:993–1000. https://doi.org/10.1046/j.1365-2699.1999.00358.x DOI
Vanormelingen P, Verleyen E, Vyverman W (2008) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers Conserv 17:393–405. https://doi.org/10.1007/s10531-007-9257-4 DOI
Verleyen E, Van de Vijver B, Tytgat B et al (2021) Diatoms define a novel freshwater biogeography of the Antarctic. Ecography 44:1–13. https://doi.org/10.1111/ecog.05374
Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385. https://doi.org/10.1017/s0954102000000420 DOI
Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, New York, pp 1–23 DOI
von Stosch HA, Fecher K (1979) ‘Internal thecae’ of Eunotia soleirolii (Bacillariophyceae): development, structure and function as resting spores. J Phycol 15:233–243. https://doi.org/10.1111/j.0022-3646.1979.00233.x DOI
Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, van de Vijver B, de Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113. https://doi.org/10.1016/j.polar.2010.03.006 DOI
Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x PubMed DOI
Zidarova R, Kopalová K, Van de Vijver B (2016) Diatoms from the Antarctic region: Maritime Antarctica. In: Lange-Bertalot H (ed) Iconographia Diatomologica. Koeltz Botanical Books, pp 1–509