Summer and autumn photosynthetic activity in High Arctic biological soil crusts and their winter recovery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41383734
PubMed Central
PMC12689970
DOI
10.3389/fmicb.2025.1684649
Knihovny.cz E-zdroje
- Klíčová slova
- Arctic, biological soil crust, cyanobacteria, diurnal cycle, microalgae, photosynthetic activity,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Biological soil crusts, found in arid and semi-arid areas worldwide, play a crucial role in the carbon cycle. This study analyzed biocrusts from three different altitudes in Svalbard (High Arctic) in 2022-2024. METHODS AND RESULTS: Monitoring of microclimatic parameters, including irradiance, humidity, air, and soil temperature, revealed unexpected extremes at the lowest elevation site. Molecular methods were used to determine the diversity of microalgae, revealing the presence of Trebouxiophyceae and Chlorophyceae as the dominant eukaryotic algal groups. Among the cyanobacteria, the dominant taxonomical groups were Nostocales, Pseudanabaenales, and Oscillatoriales. Measured photosynthetic activity was largely driven by irradiance across the different seasons and locations. Higher maximum quantum yield (FV/FM) values (approximately 0.6) were measured at lower irradiance levels (< 100 μmol m-2 s-1). Photosynthetic activity was observed in early October 2022, and diurnal changes were even noticeable at subzero temperatures in late October 2023, with the low irradiance curve being mirrored by the development of FV/FM. Furthermore, thawed biocrusts in winter exhibited the ability to rapidly restore photosynthetic activity, which was also supported by the expression of photosynthesis-related genes. Metatranscriptomic analysis revealed that the differential gene expression observed for the D1, RbcS, Ohp1, and ELIP proteins suggests that light stress-induced photoinhibition plays a major role in biocrusts, particularly in winter. CONCLUSION: The biocrusts can remain active for extended periods and provide carbon fixation during times when tundra plants primarily engage in respiration, making them very important for the polar environment.
Centre for Polar Ecology Faculty of Science University of South Bohemia České Budějovice Czechia
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Phycology Institute of Botany Czech Academy of Sciences Trebon Czechia
Zobrazit více v PubMed
Adamska I. (1997). ELIPs – light-induced stress proteins. Physiol. Plant. 100, 794–805. doi: 10.1111/j.1399-3054.1997.tb00006.x DOI
Andersson B., Aro E.-M. (2001). “Photodamage and D1 protein turnover in photosystem II,” in Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, eds. Aro E.-M., Andersson B. (Dordrecht: Springer; ), 377–393. doi: 10.1007/0-306-48148-0_22 DOI
Aransiola S. A., Atta H. I., Maddela N. R. (2024). Soil Microbiome in Green Technology Sustainability. Cham: Springer.
Arndal M., Illeris L., Michelsen A., Albert K., Tamstorf M., Hansen B., et al. (2009). Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct. Antarct. Alp. Res. 41, 164–173. doi: 10.1657/1938-4246-41.2.164 DOI
Bååth E., Kritzberg E. S. (2024). Temperature adaptation of aquatic bacterial community growth is faster in response to rising than to falling temperature. Microb. Ecol. 87. doi: 10.1007/s00248-024-02353-8 PubMed DOI PMC
Barták M., Hájek J., Orekhova A., Villagra J., Marín C., Palfner G., et al. (2021). Inhibition of primary photosynthesis in desiccating antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms 9:818. doi: 10.3390/microorganisms9040818 PubMed DOI PMC
Belnap J., Lange O. L. (2003). Biological Soil Crusts: Structure, Function, and Management. Cham: Springer. doi: 10.1007/978-3-642-56475-8 DOI
Biswas S., Eaton-Rye J. J. (2022). PsbX maintains efficient electron transport in Photosystem II and reduces susceptibility to high light in PubMed DOI
Borchhardt N., Baum C., Mikhailyuk T., Karsten U. (2017a). Biological soil crusts of Arctic Svalbard - water availability as potential controlling factor for microalgal biodiversity. Front. Microbiol. 8:1485. doi: 10.3389/fmicb.2017.01485 PubMed DOI PMC
Borchhardt N., Schiefelbein U., Abarca N., Boy J., Mikhailyuk T., Sipman H. J. M., et al. (2017b). Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarct. Sci. 29, 229–237. doi: 10.1017/S0954102016000638 DOI
Borowitzka M. A., Beardall J., Raven J. A. (2016). The Physiology of Microalgae. Cham: Springer. doi: 10.1007/978-3-319-24945-2 DOI
Bowker M. A., Belnap J., Bala Chaudhary V., Johnson N. C. (2008). Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol. Biochem. 40, 2309–2316. doi: 10.1016/j.soilbio.2008.05.008 DOI
Bu C., Wu S., Yang K. (2014). Effects of physical soil crusts on infiltration and splash erosion in three typical Chinese soils. Int. J. Sediment Res. 29, 491–501. doi: 10.1016/S1001-6279(14)60062-7 DOI
Büchel C., Wilhelm C. (1993). DOI
Čapková K., Hauer T., Reháková K., DoleŽal J. (2016). Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya. Microb. Ecol. 71, 113–123. doi: 10.1007/s00248-015-0694-4 PubMed DOI
Consalvey M., Perkins R. G., Paterson D. M., Underwood G. J. C. (2005). PAM fluorescence: a beginners guide for benthic diatomists. Diatom Res. 20, 1–22. doi: 10.1080/0269249X.2005.9705619 DOI
Dallmann W., Kjærnet T., Nøttvedt A. (2001). Geological Map of Svalbard 1:100000 Sheet C9G Adventdalen. Geological Map of Svalbard. Tromsø: Norwegien Polar Institute.
Davey M. C. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 10, 29–36. doi: 10.1007/BF00238287 DOI
Davey M. C., Pickup J., Block W. (1992). Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct. Sci. 4, 383–388. doi: 10.1017/S0954102092000567 DOI
De Maayer P., Anderson D., Cary C., Cowan D. A. (2014). Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15, 508–517. doi: 10.1002/embr.201338170 PubMed DOI PMC
Elberling B. (2007). Annual soil CO DOI
Elster J., Degma P., Kováčik L., Valentová L., Šramková K., Batista Pereira A., et al. (2008). Freezing and desiccation injury resistance in the filamentous green alga DOI
Evans R. D., Johansen J. R. (1999). Microbiotic crusts and ecosystem processes. CRC Crit. Rev. Plant Sci. 18, 183–225. doi: 10.1080/07352689991309199 DOI
Fahnestock J. T., Jones M. H., Brooks P. D., Walker D. A., Welker J. M. (1998). Winter and early spring CO DOI
Førland E. J., Hanssen-Bauer I., Nordli P. Ø. (1997). Climate statistics and longterm series of temperature and precipitation at Svalbard and Jan Mayen. DNMI Klima 21:73. doi: 10.2166/nh.1997.0002 DOI
Gharemahmudli S., Sadeghi S. H., Najafinejad A. (2024). The potential of soil endemic microorganisms in ameliorating the physicochemical properties of soil subjected to a freeze-thaw cycle. Pedobiologia 106:150988. doi: 10.1016/j.pedobi.2024.150988 DOI
Giardi M. T., Masojídek J., Godde D. (1997). Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiol. Plant. 101, 635–642. doi: 10.1111/j.1399-3054.1997.tb01048.x DOI
Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. doi: 10.1093/nar/gkn176 PubMed DOI PMC
Gypser S., Herppich W. B., Fischer T., Lange P., Veste M. (2016). Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany. Flora: Morphol. Distrib. Funct. Ecol. Plants 220, 103–116. doi: 10.1016/j.flora.2016.02.012 DOI
Hájek J., Barták M., Hazdrová J., Forbelská M. (2016). Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology 73, 329–334. doi: 10.1016/j.cryobiol.2016.10.002 PubMed DOI
Hájek J., Hojdová A., Trnková K., Váczi P., Bednaríková M., Barták M., et al. (2021). Responses of thallus anatomy and chlorophyll fluorescence-based photosynthetic characteristics of two antarctic species of genus usnea to low temperature. Photosynthetica 59, 95–105. doi: 10.32615/ps.2021.002 DOI
Hawes I. (1990). Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia 29:326–31. doi: 10.2216/i0031-8884-29-3-326.1 DOI
Hejduková E., Elster J., Nedbalová L. (2020). Annual cycle of freshwater diatoms in the High Arctic revealed by multiparameter fluorescent staining. Microb. Ecol. 80, 559–572. doi: 10.1007/s00248-020-01521-w PubMed DOI
Hejduková E., Kollár J., Nedbalová L. (2024). Freezing stress tolerance of benthic freshwater diatoms from the genus PubMed DOI
Hejduková E., Nedbalová L. (2021). Experimental freezing of freshwater pennate diatoms from polar habitats. Protoplasma 258, 1213–1229. doi: 10.1007/s00709-021-01648-8 PubMed DOI
Hejduková E., Pinseel E., Vanormelingen P., Nedbalová L., Elster J., Vyverman W., et al. (2019). Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia 58, 382–392. doi: 10.1080/00318884.2019.1591835 DOI
Holzinger A., Albert A., Aigner S., Uhl J., Schmitt-Kopplin P., Trumhová K., et al. (2018). Arctic, Antarctic, and temperate green algae PubMed DOI PMC
Hovenden M. J., Jackson A. E., Seppelt R. D. (1994). Field photosynthetic activity of lichens in the Windmill Islands oasis, Wilkes Land, continental Antarctica. Physiol. Plant. 90, 567–576. doi: 10.1111/j.1399-3054.1994.tb08816.x DOI
Hu X., Liu J., Liu E., Qiao K., Gong S., Wang J., et al. (2021). PubMed DOI
Huntington H., Weller G., Bush E., Callaghan T. V., Kattsov V. M., Nuttall M., et al. (2005). “Arctic climate: past and present,” in Arctic Climate Impact Assessment, eds Symon C., Arris L., Heal B. (New York, NY: Cambridge University Press; ), 21–60
Jansson S., Andersson J., Kim S. J., Jackowski G. (2000). An PubMed DOI
Joseph J., Ray J. G. (2024). A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. J. Phycol. 60, 229–253. doi: 10.1111/jpy.13444 PubMed DOI
Kappen L. (1993). Plant activity under snow and ice, with particular reference to lichens. Arctic 46, 297–302. doi: 10.14430/arctic1356 DOI
Kappen L., Meyer M., Bölter M. (1990). Ecological and physiological investigations in continental antarctic cryptogams. Flora 184, 209–220. doi: 10.1016/S0367-2530(17)31612-2 DOI
Kappen L., Schroeter B., Scheidegger C., Sommerkorn M., Hestmark G. (1996). Cold resistance and metabolic activity of lichens below 0°C. Adv. Space Res. 18, 119–128. doi: 10.1016/0273-1177(96)00007-5 DOI
Karsten U., Holzinger A. (2012). Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga PubMed DOI
Karsten U., Lütz C., Holzinger A. (2010). Ecophysiological performance of the aeroterrestrial green alga PubMed DOI
Kopylova E., Noé L., Touzet H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217. doi: 10.1093/bioinformatics/bts611 PubMed DOI
Kotas P., Šantručková H., Elster J., Kaštovská E. (2018). Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 15, 1879–1894. doi: 10.5194/bg-15-1879-2018 DOI
Krause G. H., Weis E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349. doi: 10.1146/annurev.pp.42.060191.001525 DOI
Kvíderová J., Souquieres C. E., Elster J. (2019). Ecophysiology of photosynthesis of DOI
Laguna-Defior C., Pintado A., Green T. G. A., Blanquer J. M., Sancho L. G. (2016). Distributional and ecophysiological study on the Antarctic lichens species pair DOI
Lan S., Wu L., Zhang D., Hu C. (2012). Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts. Plant Soil 351, 325–336. doi: 10.1007/s11104-011-0966-9 DOI
Láska K., Witoszová D., Prošek P. (2012). Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Pol. Polar Res. 33, 297–318. doi: 10.2478/v10183-012-0025-0 DOI
Laurila T., Soegaard H., Lloyd C. R., Aurela M., Tuovinen J. P., Nordstroem C., et al. (2001). Seasonal variations of net CO DOI
Li B., Dewey C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 1–16. doi: 10.1186/1471-2105-12-323 PubMed DOI PMC
Li D., Liu C.-M., Luo R., Sadakane K., Lam T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/bioinformatics/btv033 PubMed DOI
Lichner L., Hallett P. D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J., et al. (2013). Algae influence the hydrophysical parameters of a sandy soil. Catena 108, 58–68. doi: 10.1016/j.catena.2012.02.016 DOI
Major H., Nagy J. (1972). Geology of the Adventdalen Map Area. Oslo: Norsk Polarinstitutt.
Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jexbot/51.345.659 PubMed DOI
Meredith M., Mackintosh A., Melbourne-Thomas J., Muelbert M. M. C., Ottersen G., Pritchard H., et al. (2019). “Polar regions,” in The Ocean and Cryosphere in a Changing Climate, eds. Pörtner H.-O., Roberts D. C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Alegría A., Nicolai M., Okem A., Petzold J., Rama B., Weyer N. M. (Monaco: Intergovernmental Panel on Climate Change; ), 203–320.
Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70, 222–252. doi: 10.1128/MMBR.70.1.222-252.2006 PubMed DOI PMC
Morgner E., Elberling B., Strebel D., Cooper E. J. (2010). The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29, 58–74. doi: 10.1111/j.1751-8369.2010.00151.x DOI
Morosinotto T., Bassi R. (2014). “Molecular mechanisms for activation of non-photochemical fluorescence quenching: from unicellular algae to mosses and higher plants,” in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds. Demmig-Adams B., Garab G., Adams W., III, Govindjee W. (Dordrecht: Springer; ), 315–331. doi: 10.1007/978-94-017-9032-1_14 DOI
Mulo P., Sakurai I., Aro E. M. (2012). Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim. Biophys. Acta Bioenerg. 1817, 247–257. doi: 10.1016/j.bbabio.2011.04.011 PubMed DOI
Norwegian Meteorological Institute (2023). Observations and Weather Statistics. Available online at: https://seklima.met.no/observations/ (accessed January 10, 2022).
Norwegian Polar Institute (2014). Kartdata Svalbard 1:250 000 (S250 Kartdata). Available online at: https://data.npolar.no/dataset/ (accessed October 10, 2019)
Peel M. C., Finlayson B. L., McMahon T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473. doi: 10.5194/hess-11-1633-2007 DOI
Pessi I. S., Pushkareva E., Lara Y., Borderie F., Wilmotte A., Elster J., et al. (2019). Marked succession of cyanobacterial communities following glacier retreat in the High Arctic. Microb. Ecol. 77, 136–147. doi: 10.1007/s00248-018-1203-3 PubMed DOI
Pichrtová M., Hájek T., Elster J. (2016). Annual development of mat-forming conjugating green algae DOI
Pichrtová M., Hejduková E., Nedbalová L., Elster J. (2020). “How to survive winter? adaptation and acclimation strategies of eukaryotic algae in polar terrestrial ecosystems,” in Life in Extreme Environments: Insights in Biological Capability, eds. di Prisco G., Edwards H. G., Elster J., Huiskes A. H. (Cambridge: Cambridge University Press), 101–125. doi: 10.1017/9781108683319.008 DOI
Piepjohn K., Stange R., Jochmann M., Hübner C. (2012). The Geology of Longyearbyen. Longyearbyen: Longyearbyen feltbiologiske forening.
Pospíšil P. (2016). Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 7, 1–12. doi: 10.3389/fpls.2016.01950 PubMed DOI PMC
Pushkareva E., Baumann K., Van A. T., Mikhailyuk T., Baum C., Hrynkiewicz K., et al. (2021). Diversity of microbial phototrophs and heterotrophs in Icelandic biocrusts and their role in phosphorus-rich Andosols. Geoderma 386:114905. doi: 10.1016/j.geoderma.2020.114905 DOI
Pushkareva E., Elster J., Becker B. (2023). Metagenomic analysis of antarctic biocrusts unveils a rich range of cold-shock proteins. Microorganisms 11, 1–5. doi: 10.3390/microorganisms11081932 PubMed DOI PMC
Pushkareva E., Elster J., Holzinger A., Niedzwiedz S., Becker B. (2022). Biocrusts from Iceland and Svalbard: does microbial community composition differ substantially? Front. Microbiol. 13:1048522. doi: 10.3389/fmicb.2022.1048522 PubMed DOI PMC
Pushkareva E., Elster J., Kudoh S., Imura S., Becker B. (2024a). Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front. Microbiol. 14:1323148. doi: 10.3389/fmicb.2023.1323148 PubMed DOI PMC
Pushkareva E., Hejduková E., Elster J., Becker B. (2024b). Microbial response to seasonal variation in Arctic biocrusts with a focus on fungi and cyanobacteria. Environ. Res. 263:120110. doi: 10.1016/j.envres.2024.120110 PubMed DOI
Pushkareva E., Kvíderová J., Šimek M., Elster J. (2017). Nitrogen fixation and diurnal changes of photosynthetic activity in Arctic soil crusts at different development stage. Eur. J. Soil Biol. 79, 21–30. doi: 10.1016/j.ejsobi.2017.02.002 DOI
Pushkareva E., Pessi I. S., Wilmotte A., Elster J. (2015). Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol. Ecol. 91, 1–10. doi: 10.1093/femsec/fiv143 PubMed DOI PMC
Remias D., Procházková L., Holzinger A., Nedbalová L. (2018). Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia 57, 581–592. doi: 10.2216/18-45.1 PubMed DOI PMC
Rippin M., Borchhardt N., Williams L., Colesie C., Jung P., Büdel B., et al. (2018a). Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol. 41, 909–923. doi: 10.1007/s00300-018-2252-2 DOI
Rippin M., Lange S., Sausen N., Becker B. (2018b). Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol. Ecol. 94, 1–15. doi: 10.1093/femsec/fiy036 PubMed DOI
Rodríguez-Caballero E., Escribano P., Cantón Y. (2014). Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS J. Photogramm. Remote Sens. 90, 59–67. doi: 10.1016/j.isprsjprs.2014.02.002 DOI
Roháček K., Soukupová J., Barták M. (2008). “Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress,” in Plant Cell Compartments - Selected Topics, ed. B. Schoefs (Kerala: Research Signpost; ), 41–104
Šabacká M., Elster J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 30, 31–37. doi: 10.1007/s00300-006-0156-z DOI
Savaglia V., Lambrechts S., Tytgat B., Vanhellemont Q., Elster J., Willems A., et al. (2024). Geology defines microbiome structure and composition in nunataks and valleys of the Sør Rondane Mountains, East Antarctica. Front. Microbiol. 15:1316633. doi: 10.3389/fmicb.2024.1316633 PubMed DOI PMC
Schlensog M., Pannewitz S., Green T. G. A., Schroeter B. (2004). Metabolic recovery of continental antarctic cryptogams after winter. Polar Biol. 27, 399–408. doi: 10.1007/s00300-004-0606-4 DOI
Schroeter B., Olech M., Kappenld L., Heitland W. (1995). Ecophysiological investigations of DOI
Sehnal L., Barták M., Váczi P. (2014). Diurnal changes in photosynthetic activity of the biological soil crust and lichen: effects of abiotic factors (Petuniabukta, Svalbard). Czech Polar Rep. 4, 158–167. doi: 10.5817/CPR2014-2-16 DOI
Shapira M., Lers A., Heifetz P. B., Irihimovitz V., Osmond C. B., Gillham N. W., et al. (1997). Differential regulation of chloroplast gene expression in PubMed DOI
Solovchenko A., Lukyanov A., Vasilieva S., Lobakova E. (2022). Chlorophyll fluorescence as a valuable multitool for microalgal biotechnology. Biophys. Rev. 14, 973–983. doi: 10.1007/s12551-022-00951-9 PubMed DOI PMC
Steven B., Kuske C. R., Gallegos-graves L. V., Reed S. C. (2015). Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl. Environ. Microbiol. 81, 7448–7459. doi: 10.1128/AEM.01443-15 PubMed DOI PMC
Stirbet A., Govindjee Strasser, B. J., Strasser R. J. (1998). Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation. J. Theor. Biol. 193, 131–151. doi: 10.1006/jtbi.1998.0692 DOI
Strasser R. J., Srivastava A., Tsimilli-Michael M. (2000). “The fluorescence transient as a tool to characterize and screen photosynthetic samples,” in Probing Photosynthesis: Mechanism, Regulation and Adaptation, eds. M. Yunus, U. Pathre, and P. Mohanty (London: Taylor and Francis; ), 445–483.
Strasser R. J., Tsimilli-Michael M., Srivastava A. (2004). “Analysis of the chlorophyll a fluorescence transient,” in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration, eds. G. C. Papageorgiou, and Govindjee (Dordrecht: Springer; ), 321–362. doi: 10.1007/978-1-4020-3218-9_12 DOI
Tashyreva D., Elster J. (2015). Effect of nitrogen starvation on desiccation tolerance of Arctic PubMed DOI PMC
Tashyreva D., Elster J. (2016). Annual cycles of two cyanobacterial mat communities in hydro-terrestrial habitats of the High Arctic. Microb. Ecol. 71, 887–900. doi: 10.1007/s00248-016-0732-x PubMed DOI
Ter Braak C. J. F., Šmilauer P. (2012). Canoco Reference Manual And User's Guide: Software for Ordination, Version 5.0. Ithaca, NY: Microcomputer Power.
Thomas D. N., Fogg G. E., Convey P., Fritsen C. H., Gili J.-M., Gradinger R., et al. (2008). “Stress, adaptation, and survival in polar regions,” in The Biology of Polar Regions, eds. D. N. Thomas, G. E. Fogg, P. Convey, C. H. Fritsen, J.-M. Gili, R. Gradinger, et al. (New York, NY: Oxford University Press; ), 28–52. doi: 10.1093/acprof:oso/9780199298112.003.0002 DOI
UNIS Weather Stations (2023). Adventdalen Weather Station Datasets. Available online at: https://www.unis.no/resources/weather-stations/ (accessed January 10, 2022).
Weber B., Belnap J., Büdel B., Antoninka A. J., Barger N. N., Chaudhary V. B., et al. (2022). What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. 97, 1768–1785. doi: 10.1111/brv.12862 PubMed DOI PMC
Weber B., Büdel B., Belnap J. (2016). Cyanobacteria and Algae of Biological Soil Crusts: Biological Soil Crusts: An Organizing Principle in Drylands. Cham: Springer. doi: 10.1007/978-3-319-30214-0 DOI
Williams L., Borchhardt N., Colesie C., Baum C., Komsic-Buchmann K., Rippin M., et al. (2017). Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 40, 399–411. doi: 10.1007/s00300-016-1967-1 DOI
Wu L., Zhang G., Lan S., Zhang D., Hu C. (2013). Microstructures and photosynthetic diurnal changes in the different types of lichen soil crusts. Eur. J. Soil Biol. 59, 48–53. doi: 10.1016/j.ejsobi.2013.10.001 DOI
Yadav P., Singh R. P., Alodaini H. A., Hatamleh A. A., Santoyo G., Kumar A., et al. (2023). Impact of dehydration on the physiochemical properties of PubMed DOI PMC
Yoshida K., Seger A., Kennedy F., McMinn A., Suzuki K. (2020). Freezing, melting, and light stress on the photophysiology of ice algae: PubMed DOI
Zinger L., Shahnavaz B., Baptist F., Geremia R. A., Choler P. (2009). Microbial diversity in alpine tundra soils correlates with snow cover dynamics. Isme J. 3, 850–859. doi: 10.1038/ismej.2009.20 PubMed DOI