Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs

. 2023 ; 14 () : 1323148. [epub] 20240105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38249463

The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.

Zobrazit více v PubMed

Almela P., Justel A., Quesada A. (2021). Heterogeneity of microbial communities in soils from the Antarctic peninsula region. Front. Microbiol. 12:628792. doi: 10.3389/fmicb.2021.628792, PMID: PubMed DOI PMC

Andreoli C., Moro I., la Rocca N., Rigoni F., Valle L. D., Bargelloni L. (1999). Pseudopleurochloris Antarctica gen. et sp. nov., a new coccoid xanthophycean from pack-ice of Wood Bay (Ross Sea, Antarctica): ultrastructure, pigments and 18s rRNA gene sequence. Eur. J. Phycol. 34, 149–159. doi: 10.1080/09670269910001736202 DOI

Bajerski F., Wagner D. (2013). Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiol. Ecol. 85, 128–142. doi: 10.1111/1574-6941.12105, PMID: PubMed DOI

Bastida F., Jehmlich N., Ondoño S., von Bergen M., García C., Moreno J. L. (2014). Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (with.) P. James and in the underlying soil. Soil Biol. Biochem. 76, 70–79. doi: 10.1016/j.soilbio.2014.05.004 DOI

Bendia A. G., Moreira J. C. F., Ferreira J. C. N., Romano R. G., Ferreira I. G. C., Franco D. C., et al. . (2023). Insights into Antarctic microbiomes: diversity patterns for terrestrial and marine habitats. An. Acad. Bras. Cienc. 95:e20211442. doi: 10.1590/0001-3765202320211442, PMID: PubMed DOI

Broady P. A. (1976). Six new species of terrestrial algae from signy island, south orkney islands, Antarctica. Br. Phycol. J. 11, 387–405. doi: 10.1080/00071617600650451 DOI

Büdel B., Colesie C. (2014). “Biological soil crusts” in Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soil habitats. ed. Cowan D. (Berlin: Springer-Verlag; ), 131–161.

Cary S. C., McDonald I. R., Barrett J. E., Cowan D. A. (2010). On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8, 129–138. doi: 10.1038/nrmicro2281, PMID: PubMed DOI

Cowan D. A. (2014). Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer: Berlin. 1–328.

De Los Ríos A., Wierzchos J., Ascaso C. (2014). The lithic microbial ecosystems of Antarctica’s McMurdo dry valleys. Antarct. Sci. 26, 459–477. doi: 10.1017/S0954102014000194 DOI

de Los Ríos A., Wierzchos J., Sancho L. G., Ascaso C. (2003). Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ. Microbiol. 5, 231–237. doi: 10.1046/j.1462-2920.2003.00417.x PubMed DOI

Doytchinov V., Dimov S. G. (2022). Microbial community composition of the Antarctic ecosystems: review of the Bacteria, Fungi, and Archaea identified through an NGS-based metagenomics approach. Life 12:916. doi: 10.3390/life12060916, PMID: PubMed DOI PMC

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604, PMID: PubMed DOI

Glaser K., Van A. T., Pushkareva E., Barrantes I., Karsten U. (2022). Microbial communities in biocrusts are recruited from the neighboring sand at coastal dunes along the Baltic Sea. Front. Microbiol. 13:859447. doi: 10.3389/fmicb.2022.859447, PMID: PubMed DOI PMC

Grzesiak J., Kaczyńska A., Gawor J., Żuchniewicz K., Aleksandrzak-Piekarczyk T., Gromadka R., et al. . (2020). A smelly business: microbiology of Adélie penguin guano (point Thomas rookery, Antarctica). Sci. Total Environ. 714:136714. doi: 10.1016/j.scitotenv.2020.136714, PMID: PubMed DOI

Hillebrand H., Dürselen C. D., Kirschtel D., Pollingher U., Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. doi: 10.1046/j.1529-8817.1999.3520403.x DOI

Kaczmarek Ł., Janko K., Smykla J., Michalczyk Ł. (2014). Soil tardigrades from the Antarctic peninsula with a description of a new species and some remarks on the genus Ramajendas (Eutardigrada: Isohypsibiidae). Polar Record 50, 176–182. doi: 10.1017/S0032247413000168 DOI

Kaštovská K., Elster J., Stibal M., Santrůcková H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Microb. Ecol. 50, 396–407. doi: 10.1007/s00248-005-0246-4, PMID: PubMed DOI

Kim O. S., Chae N., Lim H. S., Cho A., Kim J. H., Hong S. G., et al. . (2012). Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island, Antarctica. J. Microbiol. 50, 1081–1085. doi: 10.1007/s12275-012-2655-7, PMID: PubMed DOI

Mashamaite L., Lebre P. H., Varliero G., Maphosa S., Ortiz M., Hogg I. D., et al. . (2023). Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front. Microbiol. 14:1203216. doi: 10.3389/fmicb.2023.1203216, PMID: PubMed DOI PMC

Moniz M. B. J., Rindi F., Novis P. M., Broady P. A., Guiry M. D. (2012). Molecular phylogeny of Antarctic prasiola (prasiolales, trebouxiophyceae) reveals extensive cryptic diversity. J. Phycol. 48, 940–955. doi: 10.1111/j.1529-8817.2012.01172.x, PMID: PubMed DOI

Nemergut D. R., Anderson S. P., Cleveland C. C., Martin A. P., Miller A. E., Seimon A., et al. . (2007). Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122. doi: 10.1007/s00248-006-9144-7, PMID: PubMed DOI

Obbels D., Verleyen E., Mano M.-J., Namsaraev Z., Sweetlove M., Tytgat B., et al. . (2016). Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud land, East Antarctica. FEMS Microbiol. Ecol. 92:fiw041. doi: 10.1093/femsec/fiw041 PubMed DOI

Oksanen J. (2013). Multivariate analysis of ecological communities in R:vegan tutorial. R Documentation 3:121. doi: 10.1016/0169-5347(88)90124-3 DOI

Pushkareva E., Elster J., Holzinger A., Niedzwiedz S., Becker B. (2022). Biocrusts from Iceland and Svalbard: does microbial community composition differ substantially? Front. Microbiol. 13:1048522. doi: 10.3389/fmicb.2022.1048522, PMID: PubMed DOI PMC

Pushkareva E., Johansen J. R., Elster J. (2016). A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. 39, 2227–2240. doi: 10.1007/s00300-016-1902-5 DOI

Pushkareva E., Kvíderová J., Šimek M., Elster J. (2017). Nitrogen fixation and diurnal changes of photosynthetic activity in Arctic soil crusts at different development stage. Eur. J. Soil Biol. 79, 21–30. doi: 10.1016/j.ejsobi.2017.02.002 DOI

Pushkareva E., Pessi I. S., Namsaraev Z., Mano M. J., Elster J., Wilmotte A. (2018). Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst. Appl. Microbiol. 41, 363–373. doi: 10.1016/j.syapm.2018.01.006, PMID: PubMed DOI

Rippin M., Lange S., Sausen N., Becker B. (2018). Biodiversity of biological soil crusts from the polar regions revealed by metabarcoding. FEMS Microbiol. Ecol. 94:36. doi: 10.1093/femsec/fiy036, PMID: PubMed DOI

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584–e2522. doi: 10.7717/peerj.2584, PMID: PubMed DOI PMC

Rybalka N., Blanke M., Tzvetkova A., Noll A., Roos C., Boy J., et al. . (2023). Unrecognized diversity and distribution of soil algae from maritime Antarctica (Fildes peninsula, King George Island). Front. Microbiol. 14:1118747. doi: 10.3389/fmicb.2023.1118747 PubMed DOI PMC

Sharma S., Sutar R. R., Parida A., Bast F. (2020). DNA barcoding and ITS-tufA multi-local molecular phylogeny of nitrophilic alga Prasiola crispa growing on penguin guano at Larsemann Hills, Eastern Antarctica. Czech Polar Rep 11, 194–202. doi: 10.5817/CPR2021-2-13 DOI

Smykla J., Iakovenko N., Devetter M., Kaczmarek Ł. (2012). Diversity and distribution of tardigrades in soils of Edmonson point (northern Victoria land, continental Antarctica). Czech Polar Rep. 2, 61–70. doi: 10.5817/CPR2012-2-6 DOI

Solheim B., Zielke M. (2002). “Associations between Cyanobacteria and mosses” in Cyanobacteria in Symbiosis In: Rai, A.N., Bergman, B., Rasmussen, U. (eds) Cyanobacteria in Symbiosis. (Springer, Dordrecht: Kluwer Academic Publishers; ), 137–152.

Stewart K. J., Lamb E. G., Coxson D. S., Siciliano S. D. (2011). Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant Soil 344, 335–346. doi: 10.1007/s11104-011-0750-x DOI

Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H. W., et al. . (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. doi: 10.1111/j.1365-294X.2009.04480.x, PMID: PubMed DOI

Strullu-Derrien C. (2016). “Fungal evolution: aquatic–terrestrial transitions” in Encyclopedia of evolutionary biology. ed. Kliman R. M. (Cambridge, MA: Academic Press; ), 97–103.

Stubbendieck R. M., Vargas-Bautista C., Straight P. D. (2016). Bacterial communities: interactions to scale. Front. Microbiol. 7:1234. doi: 10.3389/fmicb.2016.01234, PMID: PubMed DOI PMC

Tashyreva D., Elster J. (2012). “Production of dormant stages and stress resistance of polar Cyanobacteria” in Life on earth and other planetary bodies, cellular origin, life in extreme habitats and astrobiology. eds. Hanslmeier A., Kempe S., Seckbach J. (Berlin: Springer Science+Business Media Dordrecht; ), 367–386.

Uddin W., Schlaeppi K., Ronchi F., Leib S. L., Erb M., Alban R. (2020). Evaluation of primer pairs for microbiome profiling across a food chain from soils to humans within the one health framework. Mol. Ecol. Resour. 20, 1558–1571. doi: 10.1101/843144 PubMed DOI PMC

Van Goethem M. W., Makhalanyane T. P., Valverde A., Cary S. C., Cowan D. A. (2016). Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiol. Ecol. 92, 1–22. doi: 10.1093/femsec/fiw051, PMID: PubMed DOI

Vass M., Eriksson K., Carlsson-Graner U., Wikner J., Andersson A. (2022). Co-occurrences enhance our understanding of aquatic fungal metacommunity assembly and reveal potential host–parasite interactions. FEMS Microbiol. Ecol. 98:fiac120. doi: 10.1093/femsec/fiac120, PMID: PubMed DOI PMC

Wang N. F., Zhang T., Zhang F., Wang E. T., He J. F., Ding H., et al. . (2015). Diversity and structure of soil bacterial communities in the Fildes region (maritime Antarctica) as revealed by 454 pyrosequencing. Front. Microbiol. 6:1188. doi: 10.3389/fmicb.2015.01188, PMID: PubMed DOI PMC

Zhang E., Thibaut L. M., Terauds A., Raven M., Tanaka M. M., van Dorst J., et al. . (2020). Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome 8:37. doi: 10.1186/s40168-020-00809-w, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...