Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36590427
PubMed Central
PMC9800606
DOI
10.3389/fmicb.2022.1048522
Knihovny.cz E-zdroje
- Klíčová slova
- amplicon sequencing, bacteria, biocrusts, co-occurrence, eukaryotes, microbial phototrophs,
- Publikační typ
- časopisecké články MeSH
A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.
Centre for Polar Ecology University of South Bohemia Ceske Budejovice Czechia
Department of Biology Botanical Institute University of Cologne Cologne Germany
Functional Plant Biology Department of Botany University of Innsbruck Innsbruck Austria
Institute of Botany Academy of Sciences of the Czech Republic Trebon Czechia
Marine Botany Faculty of Biology and Chemistry and MARUM University of Bremen Bremen Germany
Zobrazit více v PubMed
Arnalds O. (2008). Soils of Iceland. Jökull 58:9621. doi: 10.1007/978-94-017-9621-7 DOI
Barrera A., Acuña-Rodríguez I. S., Ballesteros G. I., Atala C., Molina-Montenegro M. A. (2022). Biological soil crusts as ecosystem engineers in Antarctic ecosystem. Front. Microbiol. 13, 1–12. doi: 10.3389/fmicb.2022.755014, PMID: PubMed DOI PMC
Bowker M. A., Maestre F. T., Escolar C. (2010). Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol. Biochem. 42, 405–417. doi: 10.1016/j.soilbio.2009.10.025 DOI
Büdel B., Dulić T., Darienko T., Rybalka N., Friedl T. (2016). “Cyanobacteria and algae of biological soil crusts,” in Biological soil crusts: An organizing principle in drylands. Ecological studies (analysis and synthesis). eds. Weber B., Büdel B., Belnap J., Vol. 226 (Cham: Springer; ), 55–80.
Canfora L., Bacci G., Pinzari F., Lo Papa G., Dazzi C., Benedetti A. (2014). Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9:e106662. doi: 10.1371/journal.pone.0106662, PMID: PubMed DOI PMC
de Boer W., Folman L. B., Summerbell R. C., Boddy L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811. doi: 10.1016/j.femsre.2004.11.005, PMID: PubMed DOI
Deveau A., Bonito G., Uehling J., Paoletti M., Becker M., Bindschedler S., et al. . (2018). Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. doi: 10.1093/femsre/fuy008, PMID: PubMed DOI
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461, PMID: PubMed DOI
Faust K., Raes J. (2012). Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832 PubMed DOI
Friedl T., Rybalka N. (2012). “Systematics of the green algae: a brief introduction to the current status,” in Progress in Botany 73. eds. Lüttge U., Beyschlag W., Büdel B., Francis D. (Berlin, Heidelberg: Springer; ), 259–280.
Gagunashvili A. N., Andrésson Ó. S. (2018). Distinctive characters of Nostoc genomes in cyanolichens. BMC genomics 19:434. doi: 10.1186/s12864-018-4743-5, PMID: PubMed DOI PMC
Geisen S., Mitchell E. A. D., Adl S., Bonkowski M., Dunthorn M., Ekelund F., et al. . (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323. doi: 10.1093/femsre/fuy006, PMID: PubMed DOI
Gleason F. H., Kagami M., Lefevre E., Sime-Ngando T. (2008). The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol. Rev. 22, 17–25. doi: 10.1016/j.fbr.2008.02.001 DOI
Gleason F. H., Letcher P. M., McGee P. A. (2004). Some Chytridiomycota in soil recover from drying and high temperatures. Mycol. Res. 108, 583–589. doi: 10.1017/S0953756204009736, PMID: PubMed DOI
Hillebrand H., Dürselen C. D., Kirschtel D., Pollingher U., Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. doi: 10.1046/j.1529-8817.1999.3520403.x DOI
Kalam S., Basu A., Ahmad I., Sayyed R. Z., El-Enshasy H. A., Dailin D. J., et al. . (2020). Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front. Microbiol. 11:0024. doi: 10.3389/fmicb.2020.580024, PMID: PubMed DOI PMC
Karsten U., Holzinger A. (2014). Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers. Conserv. 23, 1845–1858. doi: 10.1007/s10531-014-0653-2, PMID: PubMed DOI PMC
Kaštovská K., Elster J., Stibal M., Santrůcková H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Microb. Ecol. 50, 396–407. doi: 10.1007/s00248-005-0246-4, PMID: PubMed DOI
Lauber C. L., Hamady M., Knight R., Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi: 10.1128/AEM.00335-09, PMID: PubMed DOI PMC
Liu Y., Li X., Jia R., Huang L., Zhou Y., Gao Y. (2011). Effects of biological soil crusts on soil nematode communities following dune stabilization in the Tengger Desert, northern China. Appl. Soil Ecol. 49, 118–124. doi: 10.1016/j.apsoil.2011.06.007 DOI
Malard L. A., Pearce D. A. (2018). Minireview microbial diversity and biogeography in Arctic soils. Environ. Microbiol. Rep. 10, 611–625. doi: 10.1111/1758-2229.12680, PubMed DOI
Oksanen J. (2013). Multivariate analysis of ecological communities in R:vegan tutorial. R documentation 3:121. doi: 10.1016/0169-5347(88)90124-3 DOI
Potapov A. M., Beaulieu F., Birkhofer K., Bluhm S. L., Degtyarev M. I., Devetter M., et al. . (2022). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117. doi: 10.1111/brv.12832, PMID: PubMed DOI
Pushkareva E., Barrantes I., Leinweber P., Karsten U. (2021a). Microbial diversity in subarctic biocrusts from West Iceland following an elevation gradient. Microorganisms 9:2195. doi: 10.3390/microorganisms9112195, PMID: PubMed DOI PMC
Pushkareva E., Baumann K., Van A. T., Mikhailyuk T., Baum C., Hrynkiewicz K., et al. . (2021b). Diversity of microbial phototrophs and heterotrophs in Icelandic biocrusts and their role in phosphorus-rich andosols. Geoderma 386:114905. doi: 10.1016/j.geoderma.2020.114905 DOI
Pushkareva E., Johansen J. R., Elster J. (2016). A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. 39, 2227–2240. doi: 10.1007/s00300-016-1902-5 DOI
Rippin M., Borchhardt N., Williams L., Colesie C., Jung P., Büdel B., et al. . (2018a). Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol. 41, 909–923. doi: 10.1007/s00300-018-2252-2 DOI
Rippin M., Lange S., Sausen N., Becker B. (2018b). Biodiversity of biological soil crusts from the polar regions revealed by metabarcoding. FEMS Microbiol. Ecol. 94:36. doi: 10.1093/femsec/fiy036, PMID: PubMed DOI
Robinson C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytol. 151, 341–353. doi: 10.1046/j.1469-8137.2001.00177.x DOI
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, 1–22. doi: 10.7717/peerj.2584, PMID: PubMed DOI PMC
Roshan S. K., Dumack K., Bonkowski M., Leinweber P., Karsten U., Glaser K. (2021). Taxonomic and functional diversity of heterotrophic protists (Cercozoa and endomyxa) from biological soil crusts. Microorganisms 9, 1–14. doi: 10.3390/microorganisms9020205, PMID: PubMed DOI PMC
Schmidt S. K., Vimercati L. (2019). Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles. J. Microbiol. 57, 243–251. doi: 10.1007/s12275-019-8359-5, PMID: PubMed DOI
Sekiguchi Y., Hanada S. (2020). “Caldilineae” in Bergey’s manual of systematics of archaea and bacteria (United States: John Wiley & Sons, Ltd in association with Bergey’s Manual Trust; ), 1–3.
Sellstedt A., Richau K. H. (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic frankia. FEMS Microbiol. Lett. 342, 179–186. doi: 10.1111/1574-6968.12116, PMID: PubMed DOI
Steele J. A., Countway P. D., Xia L., Vigil P. D., Beman J. M., Kim D. Y., et al. . (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425. PubMed PMC
Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H. W., et al. . (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. doi: 10.1111/j.1365-294X.2009.04480.x, PMID: PubMed DOI
Stopnisek N., Zuhlke D., Carlier A., Barberan A., Fierer N., Becher D., et al. . (2016). Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264. doi: 10.1038/ismej.2015.73, PMID: PubMed DOI PMC
Strayer D. L., Hummon W. D., Hochberg R. (2010). “Gastrotricha” in Ecology and classification of north American freshwater invertebrates. eds. Thorp J. H., Covich A. P. (Netherlands: Elsevier Inc; ), 163–172.
Tebo B. M., Davis R. E., Anitori R. P., Connell L. B., Schiffman P., Staudigel H. (2015). Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. doi: 10.3389/fmicb.2015.00179, PMID: PubMed DOI PMC
Watanabe K., Kodama Y., Harayama S. (2001). Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 44, 253–262. doi: 10.1016/S0167-7012(01)00220-2, PMID: PubMed DOI
Weber B., Belnap J., Büdel B., Antoninka A. J., Barger N. N., Chaudhary V. B., et al. . (2022). What is a biocrust? Are fined, contemporary definition for a broadening research community. Biol. Rev. 97, 1768–1785. doi: 10.1111/brv.12862, PMID: PubMed DOI PMC
Wietrzyk-Pełka P., Otte V., Węgrzyn M. H., Olech M. (2018). From barren substrate to mature tundra - lichen colonization in the forelands of Svalbard glaciers. Acta Soc. Bot. Pol. 87:599. doi: 10.5586/asbp.3599 DOI
Williams L., Borchhardt N., Colesie C., Baum C., Komsic-Buchmann K., Rippin M., et al. . (2017). Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 40, 399–411. doi: 10.1007/s00300-016-1967-1 DOI
Williams L., Loewen-Schneider K., Maier S., Büdel B. (2016). Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol. Ecol. 92:fiw157. doi: 10.1093/femsec/fiw157, PMID: PubMed DOI PMC
Yeates G. W., Bongers T. (1999). “Nematode diversity in agroecosystems,” in Invertebrate biodiversity as bioindicators of sustainable landscapes. ed. Paoletti M. G. (Netherlands: Elsevier; ), 113–135.
Zheng Y., Saitou A., Wang C. M., Toyoda A., Minakuchi Y., Sekiguchi Y., et al. . (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front. Microbiol. 10, 1–21. doi: 10.3389/fmicb.2019.00893, PMID: PubMed DOI PMC