Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially?

. 2022 ; 13 () : 1048522. [epub] 20221216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36590427

A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.

Zobrazit více v PubMed

Arnalds O. (2008). Soils of Iceland. Jökull 58:9621. doi: 10.1007/978-94-017-9621-7 DOI

Barrera A., Acuña-Rodríguez I. S., Ballesteros G. I., Atala C., Molina-Montenegro M. A. (2022). Biological soil crusts as ecosystem engineers in Antarctic ecosystem. Front. Microbiol. 13, 1–12. doi: 10.3389/fmicb.2022.755014, PMID: PubMed DOI PMC

Bowker M. A., Maestre F. T., Escolar C. (2010). Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol. Biochem. 42, 405–417. doi: 10.1016/j.soilbio.2009.10.025 DOI

Büdel B., Dulić T., Darienko T., Rybalka N., Friedl T. (2016). “Cyanobacteria and algae of biological soil crusts,” in Biological soil crusts: An organizing principle in drylands. Ecological studies (analysis and synthesis). eds. Weber B., Büdel B., Belnap J., Vol. 226 (Cham: Springer; ), 55–80.

Canfora L., Bacci G., Pinzari F., Lo Papa G., Dazzi C., Benedetti A. (2014). Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9:e106662. doi: 10.1371/journal.pone.0106662, PMID: PubMed DOI PMC

de Boer W., Folman L. B., Summerbell R. C., Boddy L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811. doi: 10.1016/j.femsre.2004.11.005, PMID: PubMed DOI

Deveau A., Bonito G., Uehling J., Paoletti M., Becker M., Bindschedler S., et al. . (2018). Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. doi: 10.1093/femsre/fuy008, PMID: PubMed DOI

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461, PMID: PubMed DOI

Faust K., Raes J. (2012). Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832 PubMed DOI

Friedl T., Rybalka N. (2012). “Systematics of the green algae: a brief introduction to the current status,” in Progress in Botany 73. eds. Lüttge U., Beyschlag W., Büdel B., Francis D. (Berlin, Heidelberg: Springer; ), 259–280.

Gagunashvili A. N., Andrésson Ó. S. (2018). Distinctive characters of Nostoc genomes in cyanolichens. BMC genomics 19:434. doi: 10.1186/s12864-018-4743-5, PMID: PubMed DOI PMC

Geisen S., Mitchell E. A. D., Adl S., Bonkowski M., Dunthorn M., Ekelund F., et al. . (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323. doi: 10.1093/femsre/fuy006, PMID: PubMed DOI

Gleason F. H., Kagami M., Lefevre E., Sime-Ngando T. (2008). The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol. Rev. 22, 17–25. doi: 10.1016/j.fbr.2008.02.001 DOI

Gleason F. H., Letcher P. M., McGee P. A. (2004). Some Chytridiomycota in soil recover from drying and high temperatures. Mycol. Res. 108, 583–589. doi: 10.1017/S0953756204009736, PMID: PubMed DOI

Hillebrand H., Dürselen C. D., Kirschtel D., Pollingher U., Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. doi: 10.1046/j.1529-8817.1999.3520403.x DOI

Kalam S., Basu A., Ahmad I., Sayyed R. Z., El-Enshasy H. A., Dailin D. J., et al. . (2020). Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front. Microbiol. 11:0024. doi: 10.3389/fmicb.2020.580024, PMID: PubMed DOI PMC

Karsten U., Holzinger A. (2014). Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers. Conserv. 23, 1845–1858. doi: 10.1007/s10531-014-0653-2, PMID: PubMed DOI PMC

Kaštovská K., Elster J., Stibal M., Santrůcková H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Microb. Ecol. 50, 396–407. doi: 10.1007/s00248-005-0246-4, PMID: PubMed DOI

Lauber C. L., Hamady M., Knight R., Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi: 10.1128/AEM.00335-09, PMID: PubMed DOI PMC

Liu Y., Li X., Jia R., Huang L., Zhou Y., Gao Y. (2011). Effects of biological soil crusts on soil nematode communities following dune stabilization in the Tengger Desert, northern China. Appl. Soil Ecol. 49, 118–124. doi: 10.1016/j.apsoil.2011.06.007 DOI

Malard L. A., Pearce D. A. (2018). Minireview microbial diversity and biogeography in Arctic soils. Environ. Microbiol. Rep. 10, 611–625. doi: 10.1111/1758-2229.12680, PubMed DOI

Oksanen J. (2013). Multivariate analysis of ecological communities in R:vegan tutorial. R documentation 3:121. doi: 10.1016/0169-5347(88)90124-3 DOI

Potapov A. M., Beaulieu F., Birkhofer K., Bluhm S. L., Degtyarev M. I., Devetter M., et al. . (2022). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117. doi: 10.1111/brv.12832, PMID: PubMed DOI

Pushkareva E., Barrantes I., Leinweber P., Karsten U. (2021a). Microbial diversity in subarctic biocrusts from West Iceland following an elevation gradient. Microorganisms 9:2195. doi: 10.3390/microorganisms9112195, PMID: PubMed DOI PMC

Pushkareva E., Baumann K., Van A. T., Mikhailyuk T., Baum C., Hrynkiewicz K., et al. . (2021b). Diversity of microbial phototrophs and heterotrophs in Icelandic biocrusts and their role in phosphorus-rich andosols. Geoderma 386:114905. doi: 10.1016/j.geoderma.2020.114905 DOI

Pushkareva E., Johansen J. R., Elster J. (2016). A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol. 39, 2227–2240. doi: 10.1007/s00300-016-1902-5 DOI

Rippin M., Borchhardt N., Williams L., Colesie C., Jung P., Büdel B., et al. . (2018a). Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol. 41, 909–923. doi: 10.1007/s00300-018-2252-2 DOI

Rippin M., Lange S., Sausen N., Becker B. (2018b). Biodiversity of biological soil crusts from the polar regions revealed by metabarcoding. FEMS Microbiol. Ecol. 94:36. doi: 10.1093/femsec/fiy036, PMID: PubMed DOI

Robinson C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytol. 151, 341–353. doi: 10.1046/j.1469-8137.2001.00177.x DOI

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, 1–22. doi: 10.7717/peerj.2584, PMID: PubMed DOI PMC

Roshan S. K., Dumack K., Bonkowski M., Leinweber P., Karsten U., Glaser K. (2021). Taxonomic and functional diversity of heterotrophic protists (Cercozoa and endomyxa) from biological soil crusts. Microorganisms 9, 1–14. doi: 10.3390/microorganisms9020205, PMID: PubMed DOI PMC

Schmidt S. K., Vimercati L. (2019). Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles. J. Microbiol. 57, 243–251. doi: 10.1007/s12275-019-8359-5, PMID: PubMed DOI

Sekiguchi Y., Hanada S. (2020). “Caldilineae” in Bergey’s manual of systematics of archaea and bacteria (United States: John Wiley & Sons, Ltd in association with Bergey’s Manual Trust; ), 1–3.

Sellstedt A., Richau K. H. (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic frankia. FEMS Microbiol. Lett. 342, 179–186. doi: 10.1111/1574-6968.12116, PMID: PubMed DOI

Steele J. A., Countway P. D., Xia L., Vigil P. D., Beman J. M., Kim D. Y., et al. . (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425. PubMed PMC

Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H. W., et al. . (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. doi: 10.1111/j.1365-294X.2009.04480.x, PMID: PubMed DOI

Stopnisek N., Zuhlke D., Carlier A., Barberan A., Fierer N., Becher D., et al. . (2016). Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264. doi: 10.1038/ismej.2015.73, PMID: PubMed DOI PMC

Strayer D. L., Hummon W. D., Hochberg R. (2010). “Gastrotricha” in Ecology and classification of north American freshwater invertebrates. eds. Thorp J. H., Covich A. P. (Netherlands: Elsevier Inc; ), 163–172.

Tebo B. M., Davis R. E., Anitori R. P., Connell L. B., Schiffman P., Staudigel H. (2015). Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. doi: 10.3389/fmicb.2015.00179, PMID: PubMed DOI PMC

Watanabe K., Kodama Y., Harayama S. (2001). Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 44, 253–262. doi: 10.1016/S0167-7012(01)00220-2, PMID: PubMed DOI

Weber B., Belnap J., Büdel B., Antoninka A. J., Barger N. N., Chaudhary V. B., et al. . (2022). What is a biocrust? Are fined, contemporary definition for a broadening research community. Biol. Rev. 97, 1768–1785. doi: 10.1111/brv.12862, PMID: PubMed DOI PMC

Wietrzyk-Pełka P., Otte V., Węgrzyn M. H., Olech M. (2018). From barren substrate to mature tundra - lichen colonization in the forelands of Svalbard glaciers. Acta Soc. Bot. Pol. 87:599. doi: 10.5586/asbp.3599 DOI

Williams L., Borchhardt N., Colesie C., Baum C., Komsic-Buchmann K., Rippin M., et al. . (2017). Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 40, 399–411. doi: 10.1007/s00300-016-1967-1 DOI

Williams L., Loewen-Schneider K., Maier S., Büdel B. (2016). Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol. Ecol. 92:fiw157. doi: 10.1093/femsec/fiw157, PMID: PubMed DOI PMC

Yeates G. W., Bongers T. (1999). “Nematode diversity in agroecosystems,” in Invertebrate biodiversity as bioindicators of sustainable landscapes. ed. Paoletti M. G. (Netherlands: Elsevier; ), 113–135.

Zheng Y., Saitou A., Wang C. M., Toyoda A., Minakuchi Y., Sekiguchi Y., et al. . (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front. Microbiol. 10, 1–21. doi: 10.3389/fmicb.2019.00893, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...