Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25904909
PubMed Central
PMC4389727
DOI
10.3389/fmicb.2015.00278
Knihovny.cz E-zdroje
- Klíčová slova
- CTC dye, SYTOX Green, cyanobacteria, desiccation tolerance, fluorescence staining, nitrogen starvation, viability,
- Publikační typ
- časopisecké články MeSH
Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g(-1) dry mass), but did not tolerate complete desiccation (to 0.03 g water g(-1) dry mass) regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0-15% of cells to survive, while 39.8-65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen starvation).
Zobrazit více v PubMed
Alpert P. (2005). The limits and frontiers of desiccation-tolerant life. PubMed DOI
Alpert P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? PubMed DOI
Belnap J. (2003). The world at your feet: desert biological soil crusts.
Billi D. (2008). Subcellular integrities in PubMed DOI
Billi D., Potts M. (2000). “Life without water: responses of prokaryotes to desiccation,” in
Billi D., Potts M. (2002). Life and death of dried prokaryotes. PubMed DOI
Caiola M. G., Billi D., Friedmann E. I. (1996). Effect of desiccation on envelopes of the cyanobacterium DOI
Chen L., Li D., Liu Y. (2003). Salt tolerance of DOI
Chen L., Yang Y., Deng S., Xu Y., Wang G., Liu Y. (2012). The response of carbohydrate metabolism to the fluctuation of relative humidity (RH) in the desert soil cyanobacterium DOI
Crowe J. H., Carpenter J. F., Crowe L. M., Anchordoguy T. J. (1990). Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. DOI
Crowe J. H., Oliver A. E., Tablin F. (2002). Is there a single biochemical adaptation to anhydrobiosis? PubMed DOI
Davey H. M., Winson M. K. (2003). Using flow cytometry to quantify microbial heterogeneity. PubMed
Davey M. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. DOI
del Giorgio P. A., Gasol J. M. (2008). “Physiological structure and single-cell activity in marine bacterioplankton,” in
Ehling-Schulz M., Scherer S. (1999). UV protection in cyanobacteria. DOI
Gao K., Ye C. (2007). Photosynthetic insensitivity of the terrestrial cyanobacterium DOI
Garcia-Pichel F., Pringault O. (2001). Cyanobacteria track water in desert soils. PubMed DOI
Gefen O., Fridman O., Ronin I., Balaban N. Q. (2014). Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. PubMed DOI PMC
Gilbert P., Collier P. J., Brown M. R. W. (1990). Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. PubMed DOI PMC
Harel Y., Ohad I., Kaplan A. (2004). Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. PubMed DOI PMC
Hawes I., Howard-Williams C., Vincent W. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. DOI
Hershkovitz N., Oren A., Cohen Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. PubMed PMC
Hill D., Keenan T., Helm R. (1997). Extracellular polysaccharide of DOI
Hoekstra F. A., Golovina E. A., Buitink J. (2001). Mechanisms of plant desiccation tolerance. PubMed DOI
Holmstrup M., Bayley M., Ramløv H. (2002). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. PubMed DOI PMC
Holzinger A., Karsten U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. PubMed DOI PMC
Jenkins D. E., Chaisson S., Matin A. (1990). Starvation-induced cross protection against osmotic challenge in PubMed PMC
Jodłowska S., Śliwińska S. (2014). Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of DOI
Jungblut A., Hawes I. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. PubMed DOI
Klähn S., Hagemann M. (2011). Compatible solute biosynthesis in cyanobacteria. PubMed DOI
Lidstrom M. E., Konopka M. C. (2010). The role of physiological heterogeneity in microbial population behavior. PubMed DOI
Mazur P. (1984). Freezing of living cells: mechanisms and implications. PubMed
McCann M. P., Kidwell J. P., Matin A. (1991). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in PubMed PMC
Morgan C., Herman N., White P., Vesey G. (2006). Preservation of micro-organisms by drying; a review. PubMed DOI
Oliver M. J., Velten J., Mishler B. D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? PubMed DOI
Olsson-Francis K., Watson J. S., Cockell C. S. (2013). Cyanobacteria isolated from the high-intertidal zone: a model for studying the physiological prerequisites for survival in low Earth orbit. DOI
Pentecost A., Whitton B. (2012). “Subaerial cyanobacteria,” in DOI
Potts M. (1994). Desiccation tolerance of prokaryotes. PubMed PMC
Potts M. (1996). The anhydrobiotic cyanobacterial cell. DOI
Potts M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. DOI
Pringault O., Garcia-Pichel F. (2004). Hydrotaxis of cyanobacteria in desert crusts. PubMed DOI
Quesada A., Vincent W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. DOI
Rajeev L., da Rocha U. N., Klitgord N., Luning E. G., Fortney J., Axen S. D., et al. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. PubMed DOI PMC
Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. DOI
Roos J. C., Vincent W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. DOI
Šabacká M., Elster J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. DOI
Sakamoto T., Yoshida T., Arima H., Hatanaka Y., Takani Y., Tamaru Y. (2009). Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium DOI
Siegele D. A., Kolter R. (1992). Life after log. PubMed PMC
Sinetova M. A., Cervený J., Zavřel T., Nedbal L. (2012). On the dynamics and constraints of batch culture growth of the cyanobacterium PubMed DOI
Statistical Sciences. (1999).
Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. (2013). Molecular and morphological criteria for revision of the genus PubMed DOI
Sun W. Q. (2002). “Methods for the study of water relations under desiccation stress,” in DOI
Tamaru Y., Takani Y. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium PubMed DOI PMC
Tang E. P. Y., Tremblay R., Vincent W. F. (1997). Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? DOI
Tashyreva D., Elster J. (2012). “Production of dormant stages and stress resistance of polar cyanobacteria,” in DOI
Tashyreva D., Elster J., Billi D. (2013). A novel staining protocol for multiparameter assessment of cell heterogeneity in PubMed DOI PMC
Toldi O., Tuba Z., Scott P. (2009). Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? DOI
Vincent W. F. (2000). “Cyanobacterial dominance in the polar regions,” in
Walters C., Farrant J. M., Pammenter N. W., Berjak P. (2002). “Desiccation stress and damage,” in DOI
Welch A. Z., Gibney P. A., Botstein D., Koshland D. E. (2013). TOR and RAS pathways regulate desiccation tolerance in PubMed DOI PMC
Wynn-Williams D. D. (2000). “Cyanobacteria in deserts – life at the limit?,” in
Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic