Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria)

. 2015 ; 6 () : 278. [epub] 20150408

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25904909

Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g(-1) dry mass), but did not tolerate complete desiccation (to 0.03 g water g(-1) dry mass) regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0-15% of cells to survive, while 39.8-65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen starvation).

Zobrazit více v PubMed

Alpert P. (2005). The limits and frontiers of desiccation-tolerant life. Integr. Comp. Biol. 45 685–695 10.1093/icb/45.5.685 PubMed DOI

Alpert P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 209 1575–1584 10.1242/jeb.02179 PubMed DOI

Belnap J. (2003). The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189.

Billi D. (2008). Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13 49–57 10.1007/s00792-008-0196-0 PubMed DOI

Billi D., Potts M. (2000). “Life without water: responses of prokaryotes to desiccation,” in Environmental Stressors and Gene Responses, eds Storey K. B., Storey J. (Amsterdam: Elsevier Science; ), 181–192.

Billi D., Potts M. (2002). Life and death of dried prokaryotes. Res. Microbiol. 153 7–12 10.1016/S0923-2508(01)01279-7 PubMed DOI

Caiola M. G., Billi D., Friedmann E. I. (1996). Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur. J. Phycol. 31 97–105 10.1080/09670269600651251 DOI

Chen L., Li D., Liu Y. (2003). Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J. Arid Environ. 55 645–656 10.1016/S0140-1963(02)00292-6 DOI

Chen L., Yang Y., Deng S., Xu Y., Wang G., Liu Y. (2012). The response of carbohydrate metabolism to the fluctuation of relative humidity (RH) in the desert soil cyanobacterium Phormidium tenue. Eur. J. Soil Biol. 48 11–16 10.1016/j.ejsobi.2011.10.002 DOI

Crowe J. H., Carpenter J. F., Crowe L. M., Anchordoguy T. J. (1990). Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27 219–231 10.1016/0011-2240(90)90023-W DOI

Crowe J. H., Oliver A. E., Tablin F. (2002). Is there a single biochemical adaptation to anhydrobiosis? Integr. Comp. Biol. 42 497–503 10.1093/icb/42.3.497 PubMed DOI

Davey H. M., Winson M. K. (2003). Using flow cytometry to quantify microbial heterogeneity. Curr. Issues Mol. Biol. 5 9–15. PubMed

Davey M. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol. 10 29–36 10.1007/BF00238287 DOI

del Giorgio P. A., Gasol J. M. (2008). “Physiological structure and single-cell activity in marine bacterioplankton,” in Microbial Ecology of the Oceans, 2nd Edn, ed. Kirchman D. L. (Hoboken, NJ: John Wiley & Sons, Inc.), 243–298.

Ehling-Schulz M., Scherer S. (1999). UV protection in cyanobacteria. Eur. J. Phycol. 34 329–338 10.1080/09670269910001736392 DOI

Gao K., Ye C. (2007). Photosynthetic insensitivity of the terrestrial cyanobacterium Nostoc flagelliforme to solar UV radiation while rehydrated or desiccated. J. Phycol. 43 628–635 10.1111/j.1529-8817.2007.00358.x DOI

Garcia-Pichel F., Pringault O. (2001). Cyanobacteria track water in desert soils. Nature 413 380–381 10.1038/35096640 PubMed DOI

Gefen O., Fridman O., Ronin I., Balaban N. Q. (2014). Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl. Acad. Sci. U.S.A. 111 556–561 10.1073/pnas.1314114111 PubMed DOI PMC

Gilbert P., Collier P. J., Brown M. R. W. (1990). Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 34 1865–1868 10.1128/AAC.34.10.1865 PubMed DOI PMC

Harel Y., Ohad I., Kaplan A. (2004). Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 136 3070–3079 10.1104/pp.104.047712 PubMed DOI PMC

Hawes I., Howard-Williams C., Vincent W. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol. 12 587–594 10.1007/BF00236981 DOI

Hershkovitz N., Oren A., Cohen Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl. Environ. Microbiol. 57 645–648. PubMed PMC

Hill D., Keenan T., Helm R. (1997). Extracellular polysaccharide of Nostoc commune (cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J. Appl. Phycol. 9 237–248 10.1023/A:1007965229567 DOI

Hoekstra F. A., Golovina E. A., Buitink J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6 431–438 10.1016/S1360-1385(01)02052-0 PubMed DOI

Holmstrup M., Bayley M., Ramløv H. (2002). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. U.S.A. 99 5716–5720 10.1073/pnas.082580699 PubMed DOI PMC

Holzinger A., Karsten U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front. Plant Sci. 4:327 10.3389/fpls.2013.00327 PubMed DOI PMC

Jenkins D. E., Chaisson S., Matin A. (1990). Starvation-induced cross protection against osmotic challenge in Escherichia coli. J. Bacteriol. 172 2779–2781. PubMed PMC

Jodłowska S., Śliwińska S. (2014). Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of Synechococcus. Photosynthetica 52 223–232 10.1007/s11099-014-0024-y DOI

Jungblut A., Hawes I. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7 519–529 10.1111/j.1462-2920.2005.00717.x PubMed DOI

Klähn S., Hagemann M. (2011). Compatible solute biosynthesis in cyanobacteria. Environ. Microbiol. 13 551–562 10.1111/j.1462-2920.2010.02366.x PubMed DOI

Lidstrom M. E., Konopka M. C. (2010). The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6 705–712 10.1038/nchembio.436 PubMed DOI

Mazur P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247 125–142. PubMed

McCann M. P., Kidwell J. P., Matin A. (1991). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J. Bacteriol. 173 4188–4194. PubMed PMC

Morgan C., Herman N., White P., Vesey G. (2006). Preservation of micro-organisms by drying; a review. J. Microbiol. Methods 66 183–193 10.1016/j.mimet.2006.02.017 PubMed DOI

Oliver M. J., Velten J., Mishler B. D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr. Comp. Biol. 45 788–799 10.1093/icb/45.5.788 PubMed DOI

Olsson-Francis K., Watson J. S., Cockell C. S. (2013). Cyanobacteria isolated from the high-intertidal zone: a model for studying the physiological prerequisites for survival in low Earth orbit. Int. J. Astrobiol. 12 292–303 10.1017/S1473550413000104 DOI

Pentecost A., Whitton B. (2012). “Subaerial cyanobacteria,” in Ecology of Cyanobacteria II, 2nd Edn, ed. Whitton B. A. (Dordrecht: Springer Science+Business Media B. V.), 291–316 10.1007/978-94-007-3855-3_10 DOI

Potts M. (1994). Desiccation tolerance of prokaryotes. Microbiol. Rev. 58 755–805. PubMed PMC

Potts M. (1996). The anhydrobiotic cyanobacterial cell. Physiol. Plant. 97 788–794 10.1111/j.1399-3054.1996.tb00545.x DOI

Potts M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 34 319–328 10.1080/09670269910001736382 DOI

Pringault O., Garcia-Pichel F. (2004). Hydrotaxis of cyanobacteria in desert crusts. Microb. Ecol. 47 366–373 10.1007/s00248-002-0107-3 PubMed DOI

Quesada A., Vincent W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur. J. Phycol. 32 335–342 10.1080/09670269710001737269 DOI

Rajeev L., da Rocha U. N., Klitgord N., Luning E. G., Fortney J., Axen S. D., et al. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7 2178–2191 10.1038/ismej.2013.83 PubMed DOI PMC

Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 110 1–61 10.1099/00221287-111-1-1 PubMed DOI

Roos J. C., Vincent W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 125 118–125 10.1046/j.1529-8817.1998.340118.x DOI

Šabacká M., Elster J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 30 31–37 10.1007/s00300-006-0156-z DOI

Sakamoto T., Yoshida T., Arima H., Hatanaka Y., Takani Y., Tamaru Y. (2009). Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol. Res. 57 66–73 10.1111/j.1440-1835.2008.00522.x DOI

Siegele D. A., Kolter R. (1992). Life after log. J. Bacteriol. 174 345–348. PubMed PMC

Sinetova M. A., Cervený J., Zavřel T., Nedbal L. (2012). On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. J. Biotechnol. 162 148–155 10.1016/j.jbiotec.2012.04.009 PubMed DOI

Statistical Sciences. (1999). Math Soft S-PLUS 4.5. Seattle, WA: StatSci, a division of Mathsoft, Inc.

Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. (2013). Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). J. Phycol. 49 1167–1180 10.1111/jpy.12128 PubMed DOI

Sun W. Q. (2002). “Methods for the study of water relations under desiccation stress,” in Desiccation and Survival in Plants: Drying Without Dying, eds Black M., Pritchard H. W. (New York: CABI Publishing; ), 47–91 10.1079/9780851995342.0047 DOI

Tamaru Y., Takani Y. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71 7327–7333 10.1128/AEM.71.11.7327-7333.2005 PubMed DOI PMC

Tang E. P. Y., Tremblay R., Vincent W. F. (1997). Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 181 171–181 10.1111/j.0022-3646.1997.00171.x DOI

Tashyreva D., Elster J. (2012). “Production of dormant stages and stress resistance of polar cyanobacteria,” in Life on Earth and Other Planetary Bodies: Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 24 eds Hanslmeier A., Kempe S., Seckbach J. (Dordrecht: Springer Science & Business Media; ), 367–386 10.1007/978-94-007-4966-5_21 DOI

Tashyreva D., Elster J., Billi D. (2013). A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes. PLoS ONE 8:e55283 10.1371/journal.pone.0055283 PubMed DOI PMC

Toldi O., Tuba Z., Scott P. (2009). Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci. 176 187–199 10.1016/j.plantsci.2008.10.002 DOI

Vincent W. F. (2000). “Cyanobacterial dominance in the polar regions,” in The ecology of cyanobacteria – Their Diversity in Time and Space, eds Whitton B. A., Potts M. (Dordrecht: Kluwer; ), 321–340.

Walters C., Farrant J. M., Pammenter N. W., Berjak P. (2002). “Desiccation stress and damage,” in Desiccation and Survival in Plants: Drying Without Dying, eds Black M., Pritchard H. W. (New York: CABI Publishing; ), 263–291 10.1079/9780851995342.0263 DOI

Welch A. Z., Gibney P. A., Botstein D., Koshland D. E. (2013). TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol. Biol. Cell 24 115–128 10.1091/mbc.E12-07-0524 PubMed DOI PMC

Wynn-Williams D. D. (2000). “Cyanobacteria in deserts – life at the limit?,” in The Ecology of Cyanobacteria – Their Diversity in Time and Space, eds Whitton B. A., Potts M. (Dordrecht: Kluwer; ), 341–366.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic

. 2016 May ; 71 (4) : 887-900. [epub] 20160203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...