Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria)

. 2015 ; 6 () : 278. [epub] 20150408

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25904909

Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g(-1) dry mass), but did not tolerate complete desiccation (to 0.03 g water g(-1) dry mass) regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0-15% of cells to survive, while 39.8-65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g., nitrogen starvation).

Zobrazit více v PubMed

Alpert P. (2005). The limits and frontiers of desiccation-tolerant life. PubMed DOI

Alpert P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? PubMed DOI

Belnap J. (2003). The world at your feet: desert biological soil crusts.

Billi D. (2008). Subcellular integrities in PubMed DOI

Billi D., Potts M. (2000). “Life without water: responses of prokaryotes to desiccation,” in

Billi D., Potts M. (2002). Life and death of dried prokaryotes. PubMed DOI

Caiola M. G., Billi D., Friedmann E. I. (1996). Effect of desiccation on envelopes of the cyanobacterium DOI

Chen L., Li D., Liu Y. (2003). Salt tolerance of DOI

Chen L., Yang Y., Deng S., Xu Y., Wang G., Liu Y. (2012). The response of carbohydrate metabolism to the fluctuation of relative humidity (RH) in the desert soil cyanobacterium DOI

Crowe J. H., Carpenter J. F., Crowe L. M., Anchordoguy T. J. (1990). Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. DOI

Crowe J. H., Oliver A. E., Tablin F. (2002). Is there a single biochemical adaptation to anhydrobiosis? PubMed DOI

Davey H. M., Winson M. K. (2003). Using flow cytometry to quantify microbial heterogeneity. PubMed

Davey M. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. DOI

del Giorgio P. A., Gasol J. M. (2008). “Physiological structure and single-cell activity in marine bacterioplankton,” in

Ehling-Schulz M., Scherer S. (1999). UV protection in cyanobacteria. DOI

Gao K., Ye C. (2007). Photosynthetic insensitivity of the terrestrial cyanobacterium DOI

Garcia-Pichel F., Pringault O. (2001). Cyanobacteria track water in desert soils. PubMed DOI

Gefen O., Fridman O., Ronin I., Balaban N. Q. (2014). Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. PubMed DOI PMC

Gilbert P., Collier P. J., Brown M. R. W. (1990). Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. PubMed DOI PMC

Harel Y., Ohad I., Kaplan A. (2004). Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. PubMed DOI PMC

Hawes I., Howard-Williams C., Vincent W. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. DOI

Hershkovitz N., Oren A., Cohen Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. PubMed PMC

Hill D., Keenan T., Helm R. (1997). Extracellular polysaccharide of DOI

Hoekstra F. A., Golovina E. A., Buitink J. (2001). Mechanisms of plant desiccation tolerance. PubMed DOI

Holmstrup M., Bayley M., Ramløv H. (2002). Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. PubMed DOI PMC

Holzinger A., Karsten U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. PubMed DOI PMC

Jenkins D. E., Chaisson S., Matin A. (1990). Starvation-induced cross protection against osmotic challenge in PubMed PMC

Jodłowska S., Śliwińska S. (2014). Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of DOI

Jungblut A., Hawes I. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. PubMed DOI

Klähn S., Hagemann M. (2011). Compatible solute biosynthesis in cyanobacteria. PubMed DOI

Lidstrom M. E., Konopka M. C. (2010). The role of physiological heterogeneity in microbial population behavior. PubMed DOI

Mazur P. (1984). Freezing of living cells: mechanisms and implications. PubMed

McCann M. P., Kidwell J. P., Matin A. (1991). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in PubMed PMC

Morgan C., Herman N., White P., Vesey G. (2006). Preservation of micro-organisms by drying; a review. PubMed DOI

Oliver M. J., Velten J., Mishler B. D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? PubMed DOI

Olsson-Francis K., Watson J. S., Cockell C. S. (2013). Cyanobacteria isolated from the high-intertidal zone: a model for studying the physiological prerequisites for survival in low Earth orbit. DOI

Pentecost A., Whitton B. (2012). “Subaerial cyanobacteria,” in DOI

Potts M. (1994). Desiccation tolerance of prokaryotes. PubMed PMC

Potts M. (1996). The anhydrobiotic cyanobacterial cell. DOI

Potts M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. DOI

Pringault O., Garcia-Pichel F. (2004). Hydrotaxis of cyanobacteria in desert crusts. PubMed DOI

Quesada A., Vincent W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. DOI

Rajeev L., da Rocha U. N., Klitgord N., Luning E. G., Fortney J., Axen S. D., et al. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. PubMed DOI PMC

Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. DOI

Roos J. C., Vincent W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. DOI

Šabacká M., Elster J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. DOI

Sakamoto T., Yoshida T., Arima H., Hatanaka Y., Takani Y., Tamaru Y. (2009). Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium DOI

Siegele D. A., Kolter R. (1992). Life after log. PubMed PMC

Sinetova M. A., Cervený J., Zavřel T., Nedbal L. (2012). On the dynamics and constraints of batch culture growth of the cyanobacterium PubMed DOI

Statistical Sciences. (1999).

Strunecký O., Komárek J., Johansen J., Lukešová A., Elster J. (2013). Molecular and morphological criteria for revision of the genus PubMed DOI

Sun W. Q. (2002). “Methods for the study of water relations under desiccation stress,” in DOI

Tamaru Y., Takani Y. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium PubMed DOI PMC

Tang E. P. Y., Tremblay R., Vincent W. F. (1997). Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? DOI

Tashyreva D., Elster J. (2012). “Production of dormant stages and stress resistance of polar cyanobacteria,” in DOI

Tashyreva D., Elster J., Billi D. (2013). A novel staining protocol for multiparameter assessment of cell heterogeneity in PubMed DOI PMC

Toldi O., Tuba Z., Scott P. (2009). Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? DOI

Vincent W. F. (2000). “Cyanobacterial dominance in the polar regions,” in

Walters C., Farrant J. M., Pammenter N. W., Berjak P. (2002). “Desiccation stress and damage,” in DOI

Welch A. Z., Gibney P. A., Botstein D., Koshland D. E. (2013). TOR and RAS pathways regulate desiccation tolerance in PubMed DOI PMC

Wynn-Williams D. D. (2000). “Cyanobacteria in deserts – life at the limit?,” in

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...