A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes

. 2013 ; 8 (2) : e55283. [epub] 20130220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23437052

Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, 'dead cell' nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4',6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales), and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i) active and intact; (ii) injured but active; (iii) metabolically inactive but intact; (iv) inactive and injured, or dead.

Zobrazit více v PubMed

Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73(2): 169–187. PubMed

Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3(3): 238–243. PubMed

Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6(10): 705–712. PubMed

Davey HM, Winson MK (2003) Using flow cytometry to quantify microbial heterogeneity. Curr Issues Mol Biol 5(1): 9–15. PubMed

Del Giorgio PA, Gasol GM (2008) Physiological structure and single-cell activity in marine bacterioplankton. In: Microbial ecology of the oceans, Second Edition, Kirchman DL, editor. John Wiley & Sons, Inc., Hoboken, NJ, USA, 243–298.

Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4): 641–696. PubMed PMC

Müller S, Caron NG (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34(4): 554–587. PubMed

McFeters GA, Yu FP, Pyle BH, Stewart PS (1995) Physiological assessment of bacteria using fluorochromes. J Microbiol Methods 21(1): 1–13. PubMed

Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55(1–3): 193–200. PubMed

Porter J, Edwards C, Pickup RW (1995) Rapid assessment of physiological status in Escherichia coli using fluorescent probes. J Appl Bacteriol 79(4): 399–408. PubMed

López-Amorós R, Castel S, Comas-Riu J, Vives-Rego J (1997) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. Cytometry 29(4): 298–305. PubMed

Caron NG, Stephens P, Badley R (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84(6): 988–998. PubMed

Hernlem B, Hua SS (2010) Dual fluorochrome flow cytometric assessment of yeast viability. Curr Microbiol 61(1): 57–63. PubMed

Veldhuis M, Kraay G, Timmermans K (2001) Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur J Phycol 36(2): 167–177.

Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13(1): 49–57. PubMed

Zimmermann R, Iturriaga R, Becker-Birck J (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol 36(6): 926–935. PubMed PMC

Rodriguez GC, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol 58: 1801–1808. PubMed PMC

Robinow C, Kellenberger E (1994) The bacterial nucleoid revisited. Microbiol Rev 58: 211–232. PubMed PMC

Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151(8): 2503–2514. PubMed

Strunecký O, Komárek J, Elster J (2012) Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central parts of Spitsbergen. Polish Polar Research: In press.

Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63: 2421–2431. PubMed PMC

Schaule G, Flemming H-C, Ridgway HF (1993) Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol 59: 3850–3857. PubMed PMC

Kaprelyants AS, Kell DB (1993) The use of 5-cyano-2,3-ditolyl tetrazolium chloride and flow cytometry for visualization of respiratory activity in individual cells of Micrococcus luteus. J. Microbiol. Methods 17: 115–122.

Hatzinger PB, Palmer P, Smith RL, Peñarrieta CT, Yoshinari T (2003) Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria. J Microbiol Methods 2(1): 47–58. PubMed

Tachon S, Michelon D, Chambellon E, Cantonnet M, Mezange C, et al. (2009) Experimental conditions affect the site of tetrazolium violet reduction in the electron transport chain of Lactococcus lactis. Microbiology 155: 2941–2948. PubMed

Smith JJ, McFeters GA (1997) Mechanisms of INT (2-(4-iodophenyl)3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12. J Microbiol Methods 29: 161–175. PubMed

Bernas T, Dobrucki JW (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380(1): 108–16. PubMed

Schumann R, Schiewer U, Karsten U, Rieling T (2003) Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquatic Microbial Ecology 32: 137–150.

Yu W, Dodds W, Banks M (1995) Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes. Appl Environ Microbiol 61(9): 3367–3372. PubMed PMC

Teale FW, Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116(2): 161–169. PubMed PMC

Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128(4): 835–844.

Mimuro M, Kikuchi H, Murakami A (1999) Structure and function of phycobilisomes. In: Concepts in photobiology: photosynthesis and photomorphogenesis. Singhal GS, Regner G, Sopory SK, Irrgang K-D, editors. Boston: Kluwer Academic Publishers; Delhi: Narosa Pub House. 104–135.

Bodemer U (2004) Variability of phycobiliproteins in cyanobacteria detected by delayed fluorescence excitation spectroscopy and its relevance for determination of phytoplankton composition of natural water samples. J Plankton Res 26(10): 1147–1162.

Gantt E, Lipschultz CA, Grabowski J, Zimmerman BK (1979) Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol 63: 615–620. PubMed PMC

Rigbi M, Rosinski J, Siegelman HW, Sutherland JC (1980) Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism. Proc Natl Acad Sci U S A 77(4): 1961–1965. PubMed PMC

French CS, Smith JHC, Virgin HI, Airth RL (1956) Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol 31: 369–374. PubMed PMC

Brown JS (1969) Absorption and fluorescence of chlorophyll a in particle fractions from different plants. Biophys J 9(12): 1542–1552. PubMed PMC

Siegelman HW, Kycia JH (1982) Molecular morphology of cyanobacterial phycobilisomes. Plant Physiol 70(3): 887–897. PubMed PMC

Zweifel UL, Hagstrom A (1995) Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Appl Environ Microbiol 61(6): 2180–2185. PubMed PMC

Karner M, Fuhrman J (1997) Determination of active marine bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microbiol 63(4): 1208–1213. PubMed PMC

Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62(3): 667. PubMed PMC

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51(345): 659–668. PubMed

Caron NG, Badley RA (1995) Viability assessment of bacteria in mixed populations using flow cytometry. J Microsc 179(1): 55–66.

Ying L, Xie XS (1998) Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers. J Phys Chem B 102(50): 10399–10409.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...