Mapping multi-dimensional variability in water stress strategies across temperate forests

. 2024 Oct 16 ; 15 (1) : 8909. [epub] 20241016

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39414780

Grantová podpora
No. 758873 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
M2714-B29 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)

Odkazy

PubMed 39414780
PubMed Central PMC11484845
DOI 10.1038/s41467-024-53160-1
PII: 10.1038/s41467-024-53160-1
Knihovny.cz E-zdroje

Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.

Birmingham Institute of Forest Research University of Birmingham B15 2TT Birmingham UK

Centre for Ecology Evolution and Environmental Changes Azorean Biodiversity Group CHANGE Global Change and Sustainability Institute and Universidade dos Açores Faculty of Agricultural Sciences and Environment PT 9700 042 Angra do Heroísmo Azores Portugal

Department of Botany and Biodiversity Research University of Vienna Rennweg 14 1030 Vienna Austria

Department of Forest Resource Management Swedish University of Agricultural Sciences SE901 83 Umeå Sweden

Department of Physical Geography and Ecosystem Science Lund University Sölvegatan 12 22362 Lund Sweden

Forest and Natural Resources Research Centre Taxus IT ul Płomyka 56A 02 491 Warszawa Poland

Global Change Research Institute of the Czech Academy of Sciences Bělidla 986 4b 603 00 Brno Czech Republic

IFER Institute of Forest Ecosystem Research Cs Armady 655 254 01 Jilove u Prahy Czech Republic

Institute for Environmental Futures School of Geography Geology and the Environment University of Leicester LE1 7RH Leicester UK

National Centre for Earth Observation University of Leicester LE4 5SP Leicester UK

Natural Resources Institute Finland Latokartanonkaari 9 00790 Helsinki Finland

Optics of Photosynthesis Laboratory Institute for Atmospheric and Earth System Research Forest Sciences Viikki Plant Science Centre University of Helsinki Helsinki 00014 Finland

School of Geography Earth and Environmental Sciences University of Birmingham B15 2TT Birmingham UK

The United States Department of Agriculture Forest Service Northern Research Station NH 03824 Durham USA

Univ Grenoble Alpes INRAE LESSEM F 38402 St Martin d'Hères France

Universidad de Alcalá Departamento de Ciencias de la Vida Grupo de Ecología y Restauración Forestal 28805 Alcalá de Henares Spain

Universidad de Alcalá Departamento de Geología Geografía y Medio Ambiente Grupo de Investigación en Teledetección Ambiental 28801 Alcalá de Henares Madrid Spain

Wageningen University and Research Wageningen Environmental Research Droevendaalsesteeg 3 6708PB Wageningen The Netherlands

Zobrazit více v PubMed

Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol.73, 673–702 (2022). PubMed

McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science (1979)368, eaaz9463 (2020). PubMed

Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature608, 528–533 (2022). PubMed

Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science (1979)368, 261–266 (2020). PubMed

Ruiz-Benito, P. et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Glob. Chang Biol.23, 4162–4176 (2017). PubMed

McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol.178, 719–739 (2008). PubMed

Choat, B. et al. Triggers of tree mortality under drought. Nature558, 531–539 (2018). PubMed

Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil199, 213–227 (1998).

Wright, I. J. et al. The worldwide leaf economics spectrum. Nature12, 821–827 (2004). PubMed

Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol.102, 275–301 (2014).

Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature491, 752–755 (2012). PubMed

Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl Acad. Sci. USA113, 5024–5029 (2016). PubMed PMC

Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol.224, 1544–1556 (2019). PubMed

Fu, X. & Meinzer, F. C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade-offs among water transport traits. Tree Physiol.39, 122–134 (2018). PubMed

Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol.197, 862–872 (2013). PubMed

Violle, C. et al. Let the concept of trait be functional! Oikos116, 882–892 (2007).

Díaz, S. et al. The global spectrum of plant form and function. Nature529, 167–171 (2016). PubMed

Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv.5, eaav1332 (2019). PubMed PMC

Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun.11, 4221 (2020). PubMed PMC

Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol.204, 105–115 (2014). PubMed

Liu, Y., Konings, A. G., Kennedy, D. & Gentine, P. Global coordination in plant physiological and rooting strategies in response to water stress. Global Biogeochem. Cycl.35, e2020GB006758 (2021).

Stocker, B. D. et al. Global patterns of water storage in the rooting zones of vegetation. Nat. Geosci.16, 250–256 (2023). PubMed PMC

Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett.16, 106–115 (2013). PubMed

Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol.86, 902–910 (1998).

Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B: Biol. Sci.283, 20152434 (2016). PubMed PMC

Michalet, R., Le Bagousse-Pinguet, Y., Maalouf, J. P. & Lortie, C. J. Two alternatives to the stress-gradient hypothesis at the edge of life: The collapse of facilitation and the switch from facilitation to competition. J. Veg. Sci.25, 609–613 (2014).

Ackerly, D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr.74, 25–44 (2004).

López, R., Cano, F. J., Martin-StPaul, N. K., Cochard, H. & Choat, B. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. N. Phytol.230, 497–509 (2021). PubMed

Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. N. Phytol.212, 80–95 (2016). PubMed

Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model Earth Syst.11, 485–513 (2019).

Li, L. et al. Representation of plant hydraulics in the Noah‐MP land surface model: Model development and multiscale evaluation. J. Adv. Model Earth Syst.13, e2020MS002214 (2021).

Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA111, 13733–13738 (2014). PubMed PMC

Joshi, J. et al. Towards a unified theory of plant photosynthesis and hydraulics. Nat. Plants8, 1304–1316 (2022). PubMed PMC

Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett.12, 351–366 (2009). PubMed

Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol.209, 123–136 (2016). PubMed

Martin-StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett.20, 1437–1447 (2017). PubMed

Johnson, C. R. & Boerlijst, M. C. Selection at the level of the community: the importance of spatial structure. Trends Ecol. Evol.17, 83–90 (2002).

He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol.34, 200–210 (2019). PubMed

Gomarasca, U. et al. Leaf-level coordination principles propagate to the ecosystem scale. Nat. Commun.14, 3948 (2023). PubMed PMC

Boisvenue, C. & Running, S. W. Impacts of climate change on natural forest productivity - Evidence since the middle of the 20th century. Glob. Chang. Biol.12, 862–882 (2006).

Schelhaas, M. J. et al. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS ONE13, e0207151 (2018). PubMed PMC

Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Chang. Biol.23, 891–905 (2017). PubMed

Anderegg, L. D. L. Why can’t we predict traits from the environment? N. Phytol.237, 1998–2004 (2023). PubMed

Garcia, M. N., Domingues, T. F., Oliveira, R. S. & Costa, F. R. C. The biogeography of embolism resistance across resource gradients in the Amazon. Glob. Ecol. Biogeogr.32, 2199–2211 (2023).

Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol.2, 1906–1917 (2018). PubMed

Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl Acad. Sci. USA116, 587–592 (2019). PubMed PMC

Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol.26, 183–192 (2011). PubMed PMC

Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front. Plant Sci.11, 212 (2020). PubMed PMC

Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol.6, 36–50 (2022). PubMed PMC

Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences11, 2027–2054 (2014).

Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev.9, 4227–4255 (2016).

Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences17, 3017–3044 (2020).

Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol.26, 119–188 (2020). PubMed

Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature597, 683–687 (2021). PubMed

Ledo, A. et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. N. Phytol.217, 8–11 (2018). PubMed

Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol.221, 693–705 (2019). PubMed

Fox, T. R., Jokela, E. J. & Lee Allen, H. The development of pine plantation silviculture in the Southern United States. J For.105, 337–347 (2007).

Zhang, J., Liu, B., Liu, S., Feng, Z. & Jiang, K. Plantlist: Looking Up the Status of Plant Scientific Names Based on the Plant List Database. https://github.com/helixcn/plantlist/ (2023).

Flores, O. & Coomes, D. A. Estimating the wood density of species for carbon stock assessments. Methods Ecol. Evol.2, 214–220 (2011).

Carmona, C. P., Pavanetto, N. & Puglielli, G. funspace: An R package to build, analyse and plot functional trait spaces. Divers. Distrib.30, e13820 (2024).

Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography42, 1353–1359 (2019). PubMed PMC

Barbati, A., Marchetti, M., Chirici, G., & Corona, P. European forest types and forest Europe SFM indicators: tools for monitoring progress on forest biodiversity conservation. Ecol. Manag.321, 145–157 (2014).

Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang.5, 579–583 (2015).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017).

Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data9, 409 (2022). PubMed PMC

Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw.25, 1–18 (2008).

Wei, T. et al. Package ‘Corrplot’, Statistician.56, e24 (2017).

Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw.17, 1–27 (2007).

Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to Bivariate and Multivariate Analysis. Glenview, IL: Scott, Foresman.4, (1980).

Joswig, J. S. et al. Imputing missing data in plant traits: a guide to improve gap‐filling. Glob. Ecol. Biogeogr.32, 1395–1408 (2023).

Poyatos, R. et al. Gap-filling a spatially explicit plant trait database: comparing imputation methods and different levels of environmental information. Biogeosciences15, 2601–2617 (2018).

Package ‘vegan’. Community ecology package, version 2, 1–295 (2013).

Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version, 2.1, 1–189 https://github.com/tidyverse/ggplot2 (2016).

Zhu, S. D. et al. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol.38, 658–663 (2018). PubMed

Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol.3, 928–934 (2019). PubMed

Serra-Maluquer, X. et al. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Glob. Chang. Biol.28, 3871–3882 (2022). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...