Leaf-level coordination principles propagate to the ecosystem scale

. 2023 Jul 04 ; 14 (1) : 3948. [epub] 20230704

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid37402725
Odkazy

PubMed 37402725
PubMed Central PMC10319885
DOI 10.1038/s41467-023-39572-5
PII: 10.1038/s41467-023-39572-5
Knihovny.cz E-zdroje

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.

Andorra Research Innovation; Avinguda Rocafort 21 23 Edifici Molí 3r pis AD600 Sant Julià de Lòria Andorra

Bioclimatology University of Göttingen Büsgenweg 2 37077 Göttingen Germany

CEFE Univ Montpellier CNRS EPHE IRD Montpellier France

Chair of Plant and Crop Science Estonian University of Life Sciences Kreutzwaldi 1 51006 Tartu Estonia

CREAF Cerdanyola del Vallès Barcelona 08193 Catalonia Spain

CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra Barcelona 08193 Catalonia Spain

Department of Biological Sciences Andong National University Andong 36729 Republic of Korea

Department of Biology University of Copenhagen Universitetsparken 15 2100 Copenhagen Ø Denmark

Department of Biology Vrije Universiteit Brussel Pleinlaan 2 1050 Brussel Belgium

Department of Environmental Systems Science ETH Zurich Zurich Switzerland

Department of Forest Resources University of Minnesota St Paul MN 55108 USA

Department of Forestry Engineering University of Córdoba Edif Leonardo da Vinci Campus de Rabanales s n 14071 Córdoba Spain

Department of Matter and Energy Fluxes Global Change Research Institute of the Czech Academy of Sciences Bělidla 986 4a 603 00 Brno Czech Republic

Dipartimento di Scienze Università Roma TRE 5 le Marconi 446 00146 Roma Italy

Discipline of Botany School of Natural Sciences Trinity College Dublin Dublin Ireland

Ecology and Conservation Biology Institute of Plant Sciences Faculty of Biology and Preclinical Medicine University of Regensburg Universitaetsstrasse 31 D 93053 Regensburg Germany

Environmenal Research Institute University of Waikato Private Bag 3105 Hamilton New Zealand

European Commission Joint Research Centre Ispra 21027 VA Italy

Faculty of Land and Food Systems University of British Columbia Vancouver BC Canada

Faculty of Science and Technology Free University of Bolzano Piazza Università 5 39100 Bolzano Italy

Fundación Centro de Estudios Ambientales del Mediterráneo Paterna Spain

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Graduate School of Agriculture Kyoto University Oiwake Kitashirakawa Kyoto 606 8502 Japan

Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2753 Australia

Institute for Global Change Biology and School for Environment and Sustainability University of Michigan Ann Arbor MI 48109 USA

Institute of Biology Leipzig University Leipzig Germany

Institute of Ecology and Evolution Friedrich Schiller University Jena Philosophenweg 16 07743 Jena Germany

Institute of Environmental Sciences Leiden University Einsteinweg 2 2333 CC Leiden the Netherlands

Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland

Max Planck Institute for Biogeochemistry Hans Knöll Str 10 07745 Jena Germany

National Research Council of Italy Metaponto 75012 Italy

National Research Council of Italy Naples 80055 Italy

Remote Sensing Centre for Earth System Research Leipzig University 04103 Leipzig Germany

Research Center for Advanced Science and Technology the University of Tokyo 4 6 1 Komaba Meguro Tokyo 153 8904 Japan

Santa Catarina State University Agroveterinary Center Forestry Department Av Luiz de Camões 2090 Conta Dinheiro 88 520 000 Lages SC Brazil

School of Earth Environment and Society and McMaster Centre for Climate Change McMaster University Hamilton ON Canada

School of Natural Sciences Macquarie University Macquarie Park NSW 2109 Australia

Technical University of Denmark Environmental Engineering and Resource Management Bygningstorvet 115 2800 Kgs Lyngby Denmark

The Department of Earth and Environmental Systems The University of the South Sewanee TN USA

Universität Innsbruck Institut für Ökologie Innsbruck Austria

Zobrazit více v PubMed

Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI

Field C, Merino J, Mooney HA. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia. 1983;60:384–389. doi: 10.1007/BF00376856. PubMed DOI

Kattge J, Knorr W, Raddatz T, Wirth C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 2009;15:976–991. doi: 10.1111/j.1365-2486.2008.01744.x. DOI

Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992;62:365–392. doi: 10.2307/2937116. DOI

Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA. 1997;94:13730–13734. doi: 10.1073/pnas.94.25.13730. PubMed DOI PMC

Reich PB, Rich RL, Lu X, Wang Y-P, Oleksyn J. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl Acad. Sci. USA. 2014;111:13703–13708. doi: 10.1073/pnas.1216054110. PubMed DOI PMC

Wright IJ, Reich PB, Westoby M. Least‐cost input mixtures of water and nitrogen for photosynthesis. Am. Nat. 2003;161:98–111. doi: 10.1086/344920. PubMed DOI

Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI

Harrison SP, et al. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. N. Phytol. 2021;231:2125–2141. doi: 10.1111/nph.17558. PubMed DOI

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. N. Phytol. 2009;182:565–588. doi: 10.1111/j.1469-8137.2009.02830.x. PubMed DOI

Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 2014;17:82–91. doi: 10.1111/ele.12211. PubMed DOI

Bruelheide H, et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018;2:1906–1917. doi: 10.1038/s41559-018-0699-8. PubMed DOI

Suding, K. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol.14, 1125–1140 (2008).

Niinemets, Ü. Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. in Canopy Photosynthesis: From Basics to Applications (eds Hikosaka, K., Niinemets, Ü. & Anten, N. P. R.) 101–141 10.1007/978-94-017-7291-4_4 (Springer, Netherlands, 2016).

Niinemets, Ü. & Anten, N. P. R. Packing the photosynthetic machinery: from leaf to canopy. Photosynthesis10.1007/978-1-4020-9237-4_16 (2009).

Currie WS. Units of nature or processes across scales? The ecosystem concept at age 75. N. Phytol. 2011;190:21–34. doi: 10.1111/j.1469-8137.2011.03646.x. PubMed DOI

Levin, S. A. Fragile Dominion. Complexity and the Commons. (Perseus Books, 1999).

Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA. 2014;111:13697–13702. doi: 10.1073/pnas.1216065111. PubMed DOI PMC

Knohl, A. & Baldocchi, D. D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res.113 (2008).

Keenan TF, Niinemets Ü. Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants. 2016;3:1–6. doi: 10.1038/nplants.2016.201. PubMed DOI

Baldocchi DD. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob. Change Biol. 2014;20:3600–3609. doi: 10.1111/gcb.12649. PubMed DOI

Franklin O, et al. Organizing principles for vegetation dynamics. Nat. Plants. 2020;6:444–453. doi: 10.1038/s41477-020-0655-x. PubMed DOI

Osnas JLD, Lichstein JW, Reich PB, Pacala SW. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science. 2013;340:741–744. doi: 10.1126/science.1231574. PubMed DOI

Musavi T, et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evolut. 2016;6:7352–7366. doi: 10.1002/ece3.2479. PubMed DOI PMC

Dray, S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput. Stat. Data Anal.10.1016/j.csda.2007.07.015 (2008).

Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol. 1998;18:633–644. doi: 10.1093/treephys/18.8-9.633. PubMed DOI

Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. BioScience. 1997;47:235–242. doi: 10.2307/1313077. DOI

Franz D, et al. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int. Agrophys. 2018;32:439–455. doi: 10.1515/intag-2017-0039. DOI

Saunders M, et al. Importance of reporting ancillary site characteristics, and management and disturbance information at ICOS stations. Int. Agrophys. 2018;32:457–469. doi: 10.1515/intag-2017-0040. DOI

Migliavacca M, et al. The three major axes of terrestrial ecosystem function. Nature. 2021;598:468–472. doi: 10.1038/s41586-021-03939-9. PubMed DOI PMC

Joswig JS, et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022;6:36–50. doi: 10.1038/s41559-021-01616-8. PubMed DOI PMC

Schulze E, Kelliher F, Körner C, Lloyd J, Leuning R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu. Rev. Ecol. Syst. 1994;25:629–662. doi: 10.1146/annurev.es.25.110194.003213. DOI

Onoda Y, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. N. Phytol. 2017;214:1447–1463. doi: 10.1111/nph.14496. PubMed DOI

Cernusak LA, Winter K, Aranda J, Turner BL. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ 13C and δ 18O) of seedlings grown in a tropical environment. Plant Physiol. 2008;148:642–659. doi: 10.1104/pp.108.123521. PubMed DOI PMC

DeLucia EH, Schlesinger WH. Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants. Ecology. 1991;72:51–58. doi: 10.2307/1938901. DOI

Han Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol. 2011;31:976–984. doi: 10.1093/treephys/tpr016. PubMed DOI

Renninger H, Carlo N, Clark K, Schäfer K. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. Front. Plant Sci. 2015;6:1–16. doi: 10.3389/fpls.2015.00297. PubMed DOI PMC

Dong N, et al. Components of leaf-trait variation along environmental gradients. N. Phytol. 2020;228:82–94. doi: 10.1111/nph.16558. PubMed DOI

Prentice IC, et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. N. Phytol. 2011;190:169–180. doi: 10.1111/j.1469-8137.2010.03579.x. PubMed DOI

Bloomfield KJ, et al. The validity of optimal leaf traits modelled on environmental conditions. N. Phytol. 2019;221:1409–1423. doi: 10.1111/nph.15495. PubMed DOI

Stocker BD, et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 2020;13:1545–1581. doi: 10.5194/gmd-13-1545-2020. DOI

Lavergne A, Sandoval D, Hare VJ, Graven H, Prentice IC. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. Glob. Change Biol. 2020;26:7158–7172. doi: 10.1111/gcb.15364. PubMed DOI

Medlyn BE, et al. How do leaf and ecosystem measures of water-use efficiency compare? N. Phytol. 2017;216:758–770. doi: 10.1111/nph.14626. PubMed DOI

Ma X, et al. Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sens. Environ. 2019;233:111368. doi: 10.1016/j.rse.2019.111368. DOI

Caldararu S, Thum T, Yu L, Zaehle S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO2 and nutrient availability. N. Phytol. 2020;225:2331–2346. doi: 10.1111/nph.16327. PubMed DOI

Baldocchi DD. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008;56:1–26. doi: 10.1071/BT07151. DOI

Pastorello G, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 2020;7:225. doi: 10.1038/s41597-020-0534-3. PubMed DOI PMC

Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI

Flechard CR, et al. Carbon–nitrogen interactions in European forests and semi-natural vegetation—Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences. 2020;17:1583–1620. doi: 10.5194/bg-17-1583-2020. DOI

Flechard CR, et al. Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences. 2020;17:1621–1654. doi: 10.5194/bg-17-1621-2020. DOI

Fernández‐Martínez M, et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 2020;26:7067–7078. doi: 10.1111/gcb.15385. PubMed DOI

Musavi T, et al. The imprint of plants on ecosystem functioning: a data-driven approach. Int. J. Appl. Earth Obs. Geoinf. 2015;43:119–131.

Musavi T, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evolut. 2017;1:1–7. PubMed

Garnier E, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85:2630–2637. doi: 10.1890/03-0799. DOI

Reichstein M, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 2005;11:1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x. DOI

Nelson JA, et al. Coupling water and carbon fluxes to constrain estimates of transpiration: the TEA algorithm. J. Geophys. Res. 2018;123:3617–3632. doi: 10.1029/2018JG004727. DOI

Falge E, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001;107:43–69. doi: 10.1016/S0168-1923(00)00225-2. DOI

Migliavacca M, et al. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agric. For. Meteorol. 2009;149:1460–1476. doi: 10.1016/j.agrformet.2009.04.003. DOI

Britton CM, Dodd JD. Relationships of photosynthetically active radiation and shortwave irradiance. Agric. Meteorol. 1976;17:1–7. doi: 10.1016/0002-1571(76)90080-7. DOI

Knauer J, El-Madany TS, Zaehle S, Migliavacca M. Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE. 2018;13:e0201114. doi: 10.1371/journal.pone.0201114. PubMed DOI PMC

Gentine P, Entekhabi D, Chehbouni A, Boulet G, Duchemin B. Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteorol. 2007;143:13–29. doi: 10.1016/j.agrformet.2006.11.002. DOI

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A. 2016;374:20150202. doi: 10.1098/rsta.2015.0202. PubMed DOI PMC

Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R. 10.1201/b21874 (Chapman and Hall/CRC, 2017).

Dray S, Dufour AB, Chessel D. The ade4 Package—II: two-table and K-table. Methods. 2007;7:6.

Dray S, Dufour A-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI

Wickham, H. modelr: Modelling Functions that Work with the Pipe. https://modelr.tidyverse.org, https://github.com/tidyverse/modelr (2022).

Model Selection and Multimodel Inference. 10.1007/b97636 (Springer, 2004).

Bartoń, K. MuMIn: Multi-modal inference. Model selection and model averaging based on information criteria (AICc and alike). http://cran.r-project.org/web/packages/MuMIn/index.html (2013).

Grömping U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 2006;17:1–27. doi: 10.18637/jss.v017.i01. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...