Leaf-level coordination principles propagate to the ecosystem scale
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
37402725
PubMed Central
PMC10319885
DOI
10.1038/s41467-023-39572-5
PII: 10.1038/s41467-023-39572-5
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fenotyp MeSH
- klimatické změny MeSH
- listy rostlin MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
Bioclimatology University of Göttingen Büsgenweg 2 37077 Göttingen Germany
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
CREAF Cerdanyola del Vallès Barcelona 08193 Catalonia Spain
CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra Barcelona 08193 Catalonia Spain
Department of Biological Sciences Andong National University Andong 36729 Republic of Korea
Department of Biology University of Copenhagen Universitetsparken 15 2100 Copenhagen Ø Denmark
Department of Biology Vrije Universiteit Brussel Pleinlaan 2 1050 Brussel Belgium
Department of Environmental Systems Science ETH Zurich Zurich Switzerland
Department of Forest Resources University of Minnesota St Paul MN 55108 USA
Dipartimento di Scienze Università Roma TRE 5 le Marconi 446 00146 Roma Italy
Discipline of Botany School of Natural Sciences Trinity College Dublin Dublin Ireland
Environmenal Research Institute University of Waikato Private Bag 3105 Hamilton New Zealand
European Commission Joint Research Centre Ispra 21027 VA Italy
Faculty of Land and Food Systems University of British Columbia Vancouver BC Canada
Faculty of Science and Technology Free University of Bolzano Piazza Università 5 39100 Bolzano Italy
Fundación Centro de Estudios Ambientales del Mediterráneo Paterna Spain
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Graduate School of Agriculture Kyoto University Oiwake Kitashirakawa Kyoto 606 8502 Japan
Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2753 Australia
Institute of Biology Leipzig University Leipzig Germany
Institute of Environmental Sciences Leiden University Einsteinweg 2 2333 CC Leiden the Netherlands
Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland
Max Planck Institute for Biogeochemistry Hans Knöll Str 10 07745 Jena Germany
National Research Council of Italy Metaponto 75012 Italy
National Research Council of Italy Naples 80055 Italy
Remote Sensing Centre for Earth System Research Leipzig University 04103 Leipzig Germany
School of Natural Sciences Macquarie University Macquarie Park NSW 2109 Australia
The Department of Earth and Environmental Systems The University of the South Sewanee TN USA
Universität Innsbruck Institut für Ökologie Innsbruck Austria
Zobrazit více v PubMed
Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI
Field C, Merino J, Mooney HA. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia. 1983;60:384–389. doi: 10.1007/BF00376856. PubMed DOI
Kattge J, Knorr W, Raddatz T, Wirth C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 2009;15:976–991. doi: 10.1111/j.1365-2486.2008.01744.x. DOI
Reich PB, Walters MB, Ellsworth DS. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992;62:365–392. doi: 10.2307/2937116. DOI
Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA. 1997;94:13730–13734. doi: 10.1073/pnas.94.25.13730. PubMed DOI PMC
Reich PB, Rich RL, Lu X, Wang Y-P, Oleksyn J. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl Acad. Sci. USA. 2014;111:13703–13708. doi: 10.1073/pnas.1216054110. PubMed DOI PMC
Wright IJ, Reich PB, Westoby M. Least‐cost input mixtures of water and nitrogen for photosynthesis. Am. Nat. 2003;161:98–111. doi: 10.1086/344920. PubMed DOI
Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI
Harrison SP, et al. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. N. Phytol. 2021;231:2125–2141. doi: 10.1111/nph.17558. PubMed DOI
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. N. Phytol. 2009;182:565–588. doi: 10.1111/j.1469-8137.2009.02830.x. PubMed DOI
Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 2014;17:82–91. doi: 10.1111/ele.12211. PubMed DOI
Bruelheide H, et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018;2:1906–1917. doi: 10.1038/s41559-018-0699-8. PubMed DOI
Suding, K. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol.14, 1125–1140 (2008).
Niinemets, Ü. Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. in Canopy Photosynthesis: From Basics to Applications (eds Hikosaka, K., Niinemets, Ü. & Anten, N. P. R.) 101–141 10.1007/978-94-017-7291-4_4 (Springer, Netherlands, 2016).
Niinemets, Ü. & Anten, N. P. R. Packing the photosynthetic machinery: from leaf to canopy. Photosynthesis10.1007/978-1-4020-9237-4_16 (2009).
Currie WS. Units of nature or processes across scales? The ecosystem concept at age 75. N. Phytol. 2011;190:21–34. doi: 10.1111/j.1469-8137.2011.03646.x. PubMed DOI
Levin, S. A. Fragile Dominion. Complexity and the Commons. (Perseus Books, 1999).
Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA. 2014;111:13697–13702. doi: 10.1073/pnas.1216065111. PubMed DOI PMC
Knohl, A. & Baldocchi, D. D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res.113 (2008).
Keenan TF, Niinemets Ü. Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants. 2016;3:1–6. doi: 10.1038/nplants.2016.201. PubMed DOI
Baldocchi DD. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob. Change Biol. 2014;20:3600–3609. doi: 10.1111/gcb.12649. PubMed DOI
Franklin O, et al. Organizing principles for vegetation dynamics. Nat. Plants. 2020;6:444–453. doi: 10.1038/s41477-020-0655-x. PubMed DOI
Osnas JLD, Lichstein JW, Reich PB, Pacala SW. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science. 2013;340:741–744. doi: 10.1126/science.1231574. PubMed DOI
Musavi T, et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evolut. 2016;6:7352–7366. doi: 10.1002/ece3.2479. PubMed DOI PMC
Dray, S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput. Stat. Data Anal.10.1016/j.csda.2007.07.015 (2008).
Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol. 1998;18:633–644. doi: 10.1093/treephys/18.8-9.633. PubMed DOI
Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. BioScience. 1997;47:235–242. doi: 10.2307/1313077. DOI
Franz D, et al. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int. Agrophys. 2018;32:439–455. doi: 10.1515/intag-2017-0039. DOI
Saunders M, et al. Importance of reporting ancillary site characteristics, and management and disturbance information at ICOS stations. Int. Agrophys. 2018;32:457–469. doi: 10.1515/intag-2017-0040. DOI
Migliavacca M, et al. The three major axes of terrestrial ecosystem function. Nature. 2021;598:468–472. doi: 10.1038/s41586-021-03939-9. PubMed DOI PMC
Joswig JS, et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022;6:36–50. doi: 10.1038/s41559-021-01616-8. PubMed DOI PMC
Schulze E, Kelliher F, Körner C, Lloyd J, Leuning R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu. Rev. Ecol. Syst. 1994;25:629–662. doi: 10.1146/annurev.es.25.110194.003213. DOI
Onoda Y, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. N. Phytol. 2017;214:1447–1463. doi: 10.1111/nph.14496. PubMed DOI
Cernusak LA, Winter K, Aranda J, Turner BL. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ 13C and δ 18O) of seedlings grown in a tropical environment. Plant Physiol. 2008;148:642–659. doi: 10.1104/pp.108.123521. PubMed DOI PMC
DeLucia EH, Schlesinger WH. Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants. Ecology. 1991;72:51–58. doi: 10.2307/1938901. DOI
Han Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol. 2011;31:976–984. doi: 10.1093/treephys/tpr016. PubMed DOI
Renninger H, Carlo N, Clark K, Schäfer K. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. Front. Plant Sci. 2015;6:1–16. doi: 10.3389/fpls.2015.00297. PubMed DOI PMC
Dong N, et al. Components of leaf-trait variation along environmental gradients. N. Phytol. 2020;228:82–94. doi: 10.1111/nph.16558. PubMed DOI
Prentice IC, et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. N. Phytol. 2011;190:169–180. doi: 10.1111/j.1469-8137.2010.03579.x. PubMed DOI
Bloomfield KJ, et al. The validity of optimal leaf traits modelled on environmental conditions. N. Phytol. 2019;221:1409–1423. doi: 10.1111/nph.15495. PubMed DOI
Stocker BD, et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 2020;13:1545–1581. doi: 10.5194/gmd-13-1545-2020. DOI
Lavergne A, Sandoval D, Hare VJ, Graven H, Prentice IC. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. Glob. Change Biol. 2020;26:7158–7172. doi: 10.1111/gcb.15364. PubMed DOI
Medlyn BE, et al. How do leaf and ecosystem measures of water-use efficiency compare? N. Phytol. 2017;216:758–770. doi: 10.1111/nph.14626. PubMed DOI
Ma X, et al. Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sens. Environ. 2019;233:111368. doi: 10.1016/j.rse.2019.111368. DOI
Caldararu S, Thum T, Yu L, Zaehle S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO2 and nutrient availability. N. Phytol. 2020;225:2331–2346. doi: 10.1111/nph.16327. PubMed DOI
Baldocchi DD. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008;56:1–26. doi: 10.1071/BT07151. DOI
Pastorello G, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 2020;7:225. doi: 10.1038/s41597-020-0534-3. PubMed DOI PMC
Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI
Flechard CR, et al. Carbon–nitrogen interactions in European forests and semi-natural vegetation—Part 1: fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences. 2020;17:1583–1620. doi: 10.5194/bg-17-1583-2020. DOI
Flechard CR, et al. Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences. 2020;17:1621–1654. doi: 10.5194/bg-17-1621-2020. DOI
Fernández‐Martínez M, et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 2020;26:7067–7078. doi: 10.1111/gcb.15385. PubMed DOI
Musavi T, et al. The imprint of plants on ecosystem functioning: a data-driven approach. Int. J. Appl. Earth Obs. Geoinf. 2015;43:119–131.
Musavi T, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evolut. 2017;1:1–7. PubMed
Garnier E, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85:2630–2637. doi: 10.1890/03-0799. DOI
Reichstein M, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 2005;11:1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x. DOI
Nelson JA, et al. Coupling water and carbon fluxes to constrain estimates of transpiration: the TEA algorithm. J. Geophys. Res. 2018;123:3617–3632. doi: 10.1029/2018JG004727. DOI
Falge E, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001;107:43–69. doi: 10.1016/S0168-1923(00)00225-2. DOI
Migliavacca M, et al. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agric. For. Meteorol. 2009;149:1460–1476. doi: 10.1016/j.agrformet.2009.04.003. DOI
Britton CM, Dodd JD. Relationships of photosynthetically active radiation and shortwave irradiance. Agric. Meteorol. 1976;17:1–7. doi: 10.1016/0002-1571(76)90080-7. DOI
Knauer J, El-Madany TS, Zaehle S, Migliavacca M. Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE. 2018;13:e0201114. doi: 10.1371/journal.pone.0201114. PubMed DOI PMC
Gentine P, Entekhabi D, Chehbouni A, Boulet G, Duchemin B. Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteorol. 2007;143:13–29. doi: 10.1016/j.agrformet.2006.11.002. DOI
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A. 2016;374:20150202. doi: 10.1098/rsta.2015.0202. PubMed DOI PMC
Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R. 10.1201/b21874 (Chapman and Hall/CRC, 2017).
Dray S, Dufour AB, Chessel D. The ade4 Package—II: two-table and K-table. Methods. 2007;7:6.
Dray S, Dufour A-B. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Wickham, H. modelr: Modelling Functions that Work with the Pipe. https://modelr.tidyverse.org, https://github.com/tidyverse/modelr (2022).
Model Selection and Multimodel Inference. 10.1007/b97636 (Springer, 2004).
Bartoń, K. MuMIn: Multi-modal inference. Model selection and model averaging based on information criteria (AICc and alike). http://cran.r-project.org/web/packages/MuMIn/index.html (2013).
Grömping U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 2006;17:1–27. doi: 10.18637/jss.v017.i01. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Mapping multi-dimensional variability in water stress strategies across temperate forests