Widespread slow growth of acquisitive tree species
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40108455
DOI
10.1038/s41586-025-08692-x
PII: 10.1038/s41586-025-08692-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Trees are an important carbon sink as they accumulate biomass through photosynthesis1. Identifying tree species that grow fast is therefore commonly considered to be essential for effective climate change mitigation through forest planting. Although species characteristics are key information for plantation design and forest management, field studies often fail to detect clear relationships between species functional traits and tree growth2. Here, by consolidating four independent datasets and classifying the acquisitive and conservative species based on their functional trait values, we show that acquisitive tree species, which are supposedly fast-growing species, generally grow slowly in field conditions. This discrepancy between the current paradigm and field observations is explained by the interactions with environmental conditions that influence growth. Acquisitive species require moist mild climates and fertile soils, conditions that are generally not met in the field. By contrast, conservative species, which are supposedly slow-growing species, show generally higher realized growth due to their ability to tolerate unfavourable environmental conditions. In general, conservative tree species grow more steadily than acquisitive tree species in non-tropical forests. We recommend planting acquisitive tree species in areas where they can realize their fast-growing potential. In other regions, where environmental stress is higher, conservative tree species have a larger potential to fix carbon in their biomass.
AGACAL Centro de Investigación Forestal de Lourizán Pontevedra Spain
Centre for Forest Research Université du Québec à Montréal Montreal Quebec Canada
CNR IBE Consiglio Nazionale delle Ricerche Istituto per la BioEconomia Sassari Italy
Department of Agricultural Food and Forest Sciences University of Palermo Palermo Italy
Department of Biological Sciences Royal Holloway University of London Egham UK
Department of Earth and Environmental Sciences KU Leuven Leuven Belgium
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Department of Plant Production and Forest Resources University of Valladolid Palencia Spain
Earth and Life Institute UCLouvain Université Catholique de Louvain Louvain la Neuve Belgium
Forest and Nature Lab Department of Environment Ghent University Melle Gontrode Belgium
Forest Research Alice Holt Lodge Farnham UK
Forest Research Centre School of Agriculture University of Lisbon Lisbon Portugal
Forest Research Institute Hellenic Agricultural Organization Dimitra Thessaloniki Greece
Forest Research Northern Research Station Roslin UK
Geobotany Faculty of Biology University of Freiburg Freiburg Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Granja Modelo HAZI Arkaute Spain
Helmholtz Centre for Environmental Research UFZ Halle Germany
INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France
INRAE UEVT Antibes Juan les Pins France
INRAE University of Bordeaux BIOGECO Cestas France
Institut Européen de la Forêt Cultivée Cestas France
Institut pour le Développement Forestier Paris France
Institute of Biology Leipzig University Leipzig Germany
Institute of Forest Science CSIC Madrid Spain
Latvia University of Life Sciences and Technologies Jelgava Latvia
Leuven Plant Institute KU Leuven Leuven Belgium
Natural Resources Institute Finland Helsinki Finland
ONF UMR 0588 BioForA Orléans France
Ontario Ministry of Natural Resources and Forestry Sault Ste Marie Ontario Canada
Research Centre AgroFoodNature HOGENT University of Applied Sciences and Arts Ghent Belgium
Smithsonian Environmental Research Center Edgewater MD USA
SRAAC Azores Regional Ministry for Environment and Climate Change Angra do Heroísmo Azores Portugal
Sustainable Forest Management Research Institute University of Valladolid Palencia Spain
Zobrazit více v PubMed
Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014). PubMed DOI
Paine, C. E. T. et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J. Ecol. 103, 978–989 (2015). DOI
IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Pörtner, H.-O. et al. (eds)) (2022).
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008). PubMed DOI
Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020). PubMed DOI
Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014). DOI
Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022). PubMed DOI PMC
Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 187–261 (1992). DOI
Grime, J. et al. Integrated screening validates primary axes of specialisation in plants. Oikos 79, 259–281 (1997). DOI
Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992). DOI
Laughlin, D. C. et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecol. Evol. 7, 8936–8949 (2017). PubMed DOI PMC
Bongers, F. J. et al. Growth-trait relationships in subtropical forest are stronger at higher diversity. J. Ecol. 108, 256–266 (2020). DOI
Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010). PubMed DOI
Herault, B. et al. Functional traits shape ontogenetic growth trajectories of rain forest tree species. J. Ecol. 99, 1431–1440 (2011). DOI
Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018). PubMed DOI
Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J. Ecol. 104, 1488–1503 (2016). DOI
Weemstra, M., Zambrano, J., Allen, D. & Umaña, M. N. Tree growth increases through opposing above-ground and below-ground resource strategies. J. Ecol. 109, 3502–3512 (2021). DOI
Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material - a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017). DOI
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003). PubMed DOI
Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Glob. Biogeochem. Cycles 26, GB3007 (2012). DOI
Jonard, M. et al. Tree mineral nutrition is deteriorating in Europe. Glob. Change Biol. 21, 418–430 (2015). DOI
Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1–67 (2000).
Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental-stress. Am. Nat. 142, S78–S92 (1993). DOI
Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014). DOI
Song, C. et al. Differential tree demography mediated by water stress and functional traits in a moist tropical forest. Funct. Ecol. 37, 2927–2939 (2023). DOI
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009). PubMed DOI
Poorter, H., Lambers, H. & Evans, J. R. Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. N. Phytol. 201, 378–382 (2014). DOI
Hunter, I. & Schuck, A. Increasing forest growth in Europe—possible causes and implications for sustainable forest management. Plant Biosyst. 136, 133–141 (2002). DOI
Hoffmann, N., Heinrichs, S., Schall, P. & Vor, T. Climatic factors controlling stem growth of alien tree species at a mesic forest site: a multispecies approach. Eur. J. For. Res. 139, 915–934 (2020). DOI
Van Sundert, K. et al. Towards comparable assessment of the soil nutrient status across scales—review and development of nutrient metrics. Glob. Change Biol. 26, 392–409 (2020). DOI
Makoto, K., Kitagawa, R. & Blume-Werry, G. How do leaf functional traits and age influence the maximum rooting depth of trees? Eur. J. For. Res. 142, 1197–1206 (2023). DOI
Koehler, K., Center, A. & Cavender-Bares, J. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide. N. Phytol. 193, 730–744 (2012). DOI
Rueda, M., Godoy, O. & Hawkins, B. A. Trait syndromes among North American trees are evolutionarily conserved and show adaptive value over broad geographic scales. Ecography 41, 450–550 (2018). DOI
Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017). DOI
Mirabel, A. et al. A whole-plant functional scheme predicting the early growth of tropical tree species: evidence from 15 tree species in Central Africa. Trees Struct. Funct. 33, 491–505 (2019). DOI
Baez, S. & Homeier, J. Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: insights from a long-term nutrient manipulation experiment. Glob. Change Biol. 24, 399–409 (2018). DOI
Salgado-Luarte, C. & Gianoli, E. Shade tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol. 19, 413–419 (2017). PubMed DOI
Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022). DOI
Serra-Maluquer, X. et al. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Glob. Change Biol. 28, 3871–3882 (2022). DOI
Salguero-Gomez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016). PubMed DOI
Francis, E. J. et al. Quantifying the role of wood density in explaining interspecific variation in growth of tropical trees. Glob. Ecol. Biogeogr. 26, 1078–1087 (2017). DOI
Rodríguez-Alarcón, S., González-M, R., Carmona, C. P. & Tordoni, E. Trait-growth relationships in Colombian tropical dry forests: incorporating intraspecific variation and trait interactions. J. Veg. Sci. 35, e13233 (2024). DOI
Huston, M. A. Precipitation, soils, NPP, and biodiversity: resurrection of Albrecht’s curve. Ecol. Monogr. 82, 277–296 (2012). DOI
Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007). PubMed DOI
Qin, Y. et al. Interactions between leaf traits and environmental factors help explain the growth of evergreen and deciduous species in a subtropical forest. For. Ecol. Manage. 560, 121854 (2024). DOI
Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827 (2016).
Felipe-Lucia, M. R. et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 9, 4839 (2018). PubMed DOI PMC
Warner, E. et al. Young mixed planted forests store more carbon than monocultures—a meta-analysis. Front. For. Glob. Change 6, 1226514 (2023). DOI
Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019). DOI
Yang, H. et al. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 16, 886–892 (2023). DOI
Schwinning, S., Lortie, C. J., Esque, T. C. & DeFalco, L. A. What common-garden experiments tell us about climate responses in plants. J. Ecol. 110, 986–996 (2022). DOI
Correia, A. H. et al. Early survival and growth plasticity of 33 species planted in 38 arboreta across the European Atlantic area. Forests 9, 630 (2018). DOI
Manohan, B. et al. Use of functional traits to distinguish successional guilds of tree species for restoring forest ecosystems. Forests 14, 1075 (2023). DOI
Paquette, A. et al. A million and more trees for science. Nat. Ecol. Evol. 2, 763–766 (2018). PubMed DOI
Verheyen, K. et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45, 29–41 (2016). PubMed DOI
Augusto, L. & Boča, A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat. Commun. 13, 1097 (2022). PubMed DOI PMC
Falster, D. S., Duursma, R. A. & FitzJohn, R. G. How functional traits influence plant growth and shade tolerance across the life cycle. Proc. Natl Acad. Sci. USA 115, E6789–E6798 (2018). PubMed DOI PMC
Oktavia, D., Park, J. W. & Jin, G. Life stages and habitat types alter the relationships of tree growth with leaf traits and soils in an old-growth temperate forest. Flora 293, 152104 (2022). DOI
Chen, G., Hobbie, S. E., Reich, P. B., Yang, Y. & Robinson, D. Allometry of fine roots in forest ecosystems. Ecol. Lett. 22, 322–331 (2019). PubMed DOI
Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1999). DOI
Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006). DOI
Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021). PubMed DOI
Niklas, K. J. & Spatz, H.-C. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl Acad. Sci. USA 101, 15661–15663 (2004). PubMed DOI PMC
Chiba, Y. Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecol. Modell. 108, 219–225 (1998). DOI
Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). PubMed DOI
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–209 (2016). PubMed DOI
Wright, I. J. et al. Assessing the generality of global leaf trait relationships. N. Phytol. 166, 485–496 (2005). DOI
Gomarasca, U. et al. Leaf-level coordination principles propagate to the ecosystem scale. Nat. Commun. 14, 3948 (2023). PubMed DOI PMC
Poorter, H., Remkes, C. & Lambers, H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94, 621–627 (1990). PubMed DOI PMC
Reich, P. B., Tjoelker, M., Walters, M., Vanderklein, D. & Buschena, C. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 12, 327–338 (1998). DOI
Doraisami, M. et al. A global database of woody tissue carbon concentrations. Sci. Data 9, 284 (2022). DOI PMC
Garnier, E., Shipley, B., Roumet, C. & Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001). DOI
Perez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013). DOI
Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018). PubMed DOI
Caminha-Paiva, D., Negreiros, D., Barbosa, M. & Fernandes, G. W. Functional trait coordination in the ancient and nutrient-impoverished campo rupestre: soil properties drive stem, leaf and architectural traits. Biol. J. Linn. Soc. 133, 531–545 (2021). DOI
Eviner, V. T. & Chapin, F. S. III Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Ann. Rev. Ecol. Evol. Syst. 34, 455–485 (2003). DOI
Flores-Moreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019). DOI
Osnas, J. L. D., Lichstein, J. W., Reich, P. B. & Pacala, S. W. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340, 741–744 (2013). PubMed DOI
Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003). DOI
de la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018). DOI
Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014). DOI
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017). PubMed DOI PMC
Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014). DOI
Lu, J. et al. Remarkable effects of microbial factors on soil phosphorus bioavailability: a country-scale study. Glob. Change Biol. 28, 4459–4471 (2022). DOI
Toloşi, L. & Lengauer, T. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27, 1986–1994 (2011). PubMed DOI
Brienen, R. J. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020). PubMed DOI PMC
Charru, M., Seynave, I., Hervé, J. C., Bertrand, R. & Bontemps, J. D. Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats. Ann. For. Sci. 74, 33 (2017). DOI
Harvey, J. E. et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob. Change Biol. 26, 2505–2518 (2020). DOI
Ols, C., Hervé, J.-C. & Bontemps, J.-D. Recent growth trends of conifers across Western Europe are controlled by thermal and water constraints and favored by forest heterogeneity. Sci. Total Environ. 742, 140453 (2020). PubMed DOI
Lloyd, J. & Taylor, J. A. On the temperature-dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994). DOI
Adair, E. C. et al. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob. Change Biol. 14, 2636–2660 (2008). DOI
Chen, S. et al. National estimation of soil organic carbon storage potential for arable soils: a data-driven approach coupled with carbon-landscape zones. Sci. Total Environ. 666, 355–367 (2019). PubMed DOI
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006). DOI
Chini, L. et al. LUH2-GCB2019: Land-Use Harmonization 2 Update For The Global Carbon Budget, 850-2019 (ORNL DAAC, 2021).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). DOI
Hebbali, A. Olsrr: tools for building OLS regression models (2020); cran.r-project.org/package=olsrr .
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Díaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006). DOI
Shao, Z., Zhang, L. & Wang, L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 5569–5582 (2017). DOI
Trefflich, I., Dietrich, S., Braune, A., Abraham, K. & Weikert, C. Short-and branched-chain fatty acids as fecal markers for microbiota activity in vegans and omnivores. Nutrients 13, 1808 (2021). PubMed DOI PMC
Babst, F. et al. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 22, 706–717 (2013). DOI
Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017). DOI
Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020). PubMed DOI PMC
van der Sande, M. T. et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474 (2018). DOI
Noy-Meir, I., Walker, D. & Williams, W. Data transformations in ecological ordination: II. On the meaning of data standardization. J. Ecol. 63, 779–800 (1975).
Razali, N. M., Wah, Y. B. & others. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 (2011).
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999). DOI
Malyjurek, Z., de Beer, D., Joubert, E. & Walczak, B. Working with log-ratios. Anal. Chim. Acta 1059, 16–27 (2019). PubMed DOI
Voelkl, B., Würbel, H., Krzywinski, M. & Altman, N. The standardization fallacy. Nat. Methods 18, 5–7 (2021). PubMed DOI
Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997). PubMed DOI PMC
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004). PubMed DOI
Ellsworth, D. S. et al. Convergence in phosphorus constraints to photosynthesis in forests around the world. Nat. Commun. 13, 5005 (2022). PubMed DOI PMC
Grime, J. P. & Hunt, R. Relative growth-rate: its range and adaptive significance in a local flora. J. Ecol. 63, 393–422 (1975). DOI
Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS ONE 12, e0176959 (2017). PubMed DOI PMC
Bujang, M. A. & Baharum, N. Sample size guideline for correlation analysis. World J. Soc. Sci. Res. 3, 37–46 (2016). DOI
Altman, N. & Krzywinski, M. Points of significance: association, correlation and causation. Nat. Methods 12, 899–900 (2015). PubMed DOI
Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–283 (2016). PubMed DOI
West, P. A review of the growth behaviour of stands and trees in even-aged, monospecific forest. Ann. For. Sci. 81, 34 (2024). DOI
Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993). DOI
Isaac, M. E. et al. Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Front. Plant Sci. 8, 1196 (2017). PubMed DOI PMC
Kazakou, E. et al. Are trait-based species rankings consistent across data sets and spatial scales? J. Veg. Sci. 25, 235–247 (2014). DOI
Treurnicht, M. et al. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 29, 534–545 (2020). DOI
Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018). PubMed DOI
Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014). DOI
Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022). PubMed DOI
Fajardo, A. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species. Plant Biol. 20, 456–464 (2018). PubMed DOI
Li, T. et al. Intraspecific functional trait variability across different spatial scales: a case study of two dominant trees in Korean pine broadleaved forest. Plant Ecol. 219, 875–886 (2018). DOI
Pompa-García, M. et al. Tree-ring wood density reveals differentiated hydroclimatic interactions in species along a bioclimatic gradient. Dendrochronologia 85, 126208 (2024). DOI
Ji, M., Jin, G. & Liu, Z. Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. J. For. Res. 32, 2459–2471 (2021). DOI
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020). DOI
Boehnke, M. & Bruelheide, H. How do evergreen and deciduous species respond to shade? Tolerance and plasticity of subtropical tree and shrub species of South-East China. Environ. Exp. Bot. 87, 179–190 (2013). DOI
Cornelissen, J. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999). PubMed DOI
Unterholzner, L., Stolz, J., van der Maaten-Theunissen, M., Liepe, K. & van der Maaten, E. Site conditions rather than provenance drive tree growth, climate sensitivity and drought responses in European beech in Germany. For. Ecol. Manage. 572, 122308 (2024). DOI
Ovenden, T. S., Jinks, R. L., Mason, W. L., Kerr, G. & Reynolds, C. A comparison of the early growth and survival of lesser-known tree species for climate change adaptation in Britain. For. Ecol. Manage. 572, 122340 (2024). DOI
Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G. & Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 13, 217–225 (2011). DOI
Wooliver, R. C. et al. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment. Ecology 98, 2120–2132 (2017). PubMed DOI
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed DOI
Lu, Y., Ran, J.-H., Guo, D.-M., Yang, Z.-Y. & Wang, X.-Q. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE 9, e107679 (2014). PubMed DOI PMC
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015). DOI
Saladin, B. et al. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol. Biol. 17, 95 (2017). PubMed DOI PMC
Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. N. Phytol. 226, 1198–1212 (2020). DOI
Jiang, L. et al. Phylogeny and biogeography of Fagus (Fagaceae) based on 28 nuclear single/low-copy loci. J. Syst. Evol. 60, 759–772 (2022). DOI
Liese, R., Alings, K. & Meier, I. C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 8, 315 (2017). PubMed DOI PMC
Cadotte, M. W., Davies, T. J. & Peres-Neto, P. R. Why phylogenies do not always predict ecological differences. Ecol. Monogr. 87, 535–551 (2017). DOI
Augusto, L., Davies, T. J., Delzon, S. & de Schrijver, A. The enigma of the rise of angiosperms: can we untie the knot? Ecol. Lett. 17, 1326–1338 (2014). PubMed DOI
Augusto, L. et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90, 444–466 (2015). PubMed DOI
Bond, W. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989). DOI
Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010). PubMed DOI
Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012). DOI
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018). DOI
Reich, P. B. et al. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. R. Soc. B 277, 877–883 (2010). PubMed DOI
Zheng, J. et al. A trait-based root acquisition-defence-decomposition framework in angiosperm tree species. Nat. Commun. 15, 5311 (2024). PubMed DOI PMC