Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots

. 2024 Apr 16 ; 9 (15) : 17114-17124. [epub] 20240404

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38645370

Copper indium sulfide (CIS) nanocrystals constitute a promising alternative to cadmium- and lead-containing nanoparticles. We report a synthetic method that yields hydrophilic, core-only CIS quantum dots, exhibiting size-dependent, copper-deficient composition and optical properties that are suitable for direct coupling to biomolecules and nonradiative energy transfer applications. To assist such applications, we complemented previous studies covering the femtosecond-picosecond time scale with the investigation of slower radiative and nonradiative processes on the nanosecond time scale, using both time-resolved emission and transient absorption. As expected for core particles, relaxation occurs mainly nonradiatively, resulting in low, size-dependent photoluminescence quantum yield. The nonradiative relaxation from the first excited band is wavelength-dependent with lifetimes between 25 and 150 ns, reflecting the size distribution of the particles. Approximately constant lifetimes of around 65 ns were observed for nonradiative relaxation from the defect states at lower energies. The photoluminescence exhibited a large Stokes shift. The band gap emission decays on the order of 10 ns, while the defect emission is further red-shifted, and the lifetimes are on the order of 100 ns. Both sets of radiative lifetimes are wavelength-dependent, increasing toward longer wavelengths. Despite the low radiative quantum yield, the aqueous solubility and long lifetimes of the defect states are compatible with the proposed role of CIS quantum dots as excitation energy donors to biological molecules.

Zobrazit více v PubMed

Kolny-Olesiak J.; Weller H. Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals. ACS Appl. Mater. Interfaces 2013, 5 (23), 12221–12237. 10.1021/am404084d. PubMed DOI

Pons T.; Pic E.; Lequeux N.; Cassette E.; Bezdetnaya L.; Guillemin F.; Marchal F.; Dubertret B. Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010, 4 (5), 2531–2538. 10.1021/nn901421v. PubMed DOI

Yong K. T.; Roy I.; Hu R.; Ding H.; Cai H. X.; Zhu J.; Zhang X. H.; Bergey E. J.; Prasad P. N. Synthesis of Ternary CuInS2/Zns Quantum Dot Bioconjugates and Their Applications for Targeted Cancer Bioimaging. Integr. Biol. 2010, 2 (2–3), 121–129. 10.1039/b916663g. PubMed DOI

Chan W. C. W.; Nie S. M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281 (5385), 2016–2018. 10.1126/science.281.5385.2016. PubMed DOI

Brus L. E. Electron Electron and Electron-Hole Interactions in Small Semiconductor Crystallites - the Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80 (9), 4403–4409. 10.1063/1.447218. DOI

Biju V.; Itoh T.; Ishikawa M. Delivering Quantum Dots to Cells: Bioconjugated Quantum Dots for Targeted and Nonspecific Extracellular and Intracellular Imaging. Chem. Soc. Rev. 2010, 39 (8), 3031–3056. 10.1039/b926512k. PubMed DOI

Miyawaki A. Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling. Dev. Cell 2003, 4 (3), 295–305. 10.1016/S1534-5807(03)00060-1. PubMed DOI

Alivisatos P. The Use of Nanocrystals in Biological Detection. Nat. Biotechnol. 2004, 22 (1), 47–52. 10.1038/nbt927. PubMed DOI

Niemeyer C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem., Int. Ed. 2001, 40 (22), 4128–4158. 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S. PubMed DOI

Parak W. J.; Gerion D.; Pellegrino T.; Zanchet D.; Micheel C.; Williams S. C.; Boudreau R.; Le Gros M. A.; Larabell C. A.; Alivisatos A. P. Biological Applications of Colloidal Nanocrystals. Nanotechnology 2003, 14 (7), R15–R27. 10.1088/0957-4484/14/7/201. DOI

Booth M.; Brown A. P.; Evans S. D.; Critchley K. Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient. Chem. Mater. 2012, 24 (11), 2064–2070. 10.1021/cm300227b. DOI

Omata T.; Nose K.; Otsuka-Yao-Matsuo S. Size Dependent Optical Band Gap of Ternary I-Iii-Vi2 Semiconductor Nanocrystals. J. Appl. Phys. 2009, 105 (7), 07310610.1063/1.3103768. DOI

Michalet X.; Pinaud F. F.; Bentolila L. A.; Tsay J. M.; Doose S.; Li J. J.; Sundaresan G.; Wu A. M.; Gambhir S. S.; Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538–544. 10.1126/science.1104274. PubMed DOI PMC

Li C.; Chen W.; Wu D.; Quan D.; Zhou Z.; Hao J.; Qin J.; Li Y.; He Z.; Wang K. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots. Sci. Rep. 2016, 5, 1777710.1038/srep17777. PubMed DOI PMC

Huang W. C.; Tseng C. H.; Chang S. H.; Tuan H. Y.; Chiang C. C.; Lyu L. M.; Huang M. H. Solvothermal Synthesis of Zincblende and Wurtzite CuInS2 Nanocrystals and Their Photovoltaic Application. Langmuir 2012, 28 (22), 8496–8501. 10.1021/la300742p. PubMed DOI

Du W. M.; Qian X. F.; Yin J.; Gong Q. Shape- and Phase-Controlled Synthesis of Monodisperse, Single-Crystalline Ternary Chalcogenide Colloids through a Convenient Solution Synthesis Strategy. Chem. - Eur. J. 2007, 13 (31), 8840–8846. 10.1002/chem.200700618. PubMed DOI

Bera P.; Seok S. I. Facile Synthesis of Nanocrystalline Wurtzite Cu-In-S by Amine-Assisted Decomposition of Precursors. J. Solid State Chem. 2010, 183 (8), 1872–1877. 10.1016/j.jssc.2010.06.006. DOI

Qi Y. X.; Liu Q. C.; Tang K. B.; Liang Z. H.; Ren Z. B.; Liu X. M. Synthesis and Characterization of Nanostructured Wurtzite CuInS2: A New Cation Disordered Polymorph of CuInS2. J. Phys. Chem. C 2009, 113 (10), 3939–3944. 10.1021/jp807987t. DOI

Li T. L.; Teng H. S. Solution Synthesis of High-Quality CuInS2 Quantum Dots as Sensitizers for TiO2 Photoelectrodes. J. Mater. Chem. 2010, 20 (18), 3656–3664. 10.1039/b927279h. DOI

Yue W. J.; Han S. K.; Peng R. X.; Shen W.; Geng H. W.; Wu F.; Tao S. W.; Wang M. T. CuInS2 Quantum Dots Synthesized by a Solvothermal Route and Their Application as Effective Electron Acceptors for Hybrid Solar Cells. J. Mater. Chem. 2010, 20 (35), 7570–7578. 10.1039/c0jm00611d. DOI

Nam D. E.; Song W. S.; Yang H. Facile, Air-Insensitive Solvothermal Synthesis of Emission-Tunable CuInS2/ZnS Quantum Dots with High Quantum Yields. J. Mater. Chem. 2011, 21 (45), 18220–18226. 10.1039/c1jm12437d. DOI

Jiang Y.; Wu Y.; Mo X.; Yu W. C.; Xie Y.; Qian Y. T. Elemental Solvothermal Reaction to Produce Ternary Semiconductor CuInE2 (E = S, Se) Nanorods. Inorg. Chem. 2000, 39 (14), 2964–2965. 10.1021/ic000126x. PubMed DOI

Bao N. Z.; Qiu X. M.; Wang Y. H. A.; Zhou Z. Y.; Lu X. H.; Grimes C. A.; Gupta A. Facile Thermolysis Synthesis of CuInS2 Nanocrystals with Tunable Anisotropic Shape and Structure. Chem. Commun. 2011, 47 (33), 9441–9443. 10.1039/c1cc13314d. PubMed DOI

Castro S. L.; Bailey S. G.; Raffaelle R. P.; Banger K. K.; Hepp A. F. Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor. J. Phys. Chem. B 2004, 108 (33), 12429–12435. 10.1021/jp049107p. DOI

Castro S. L.; Bailey S. G.; Raffaelle R. P.; Banger K. K.; Hepp A. F. Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) Via Low-Temperature Pyrolysis of Molecular Single-Source Precursors. Chem. Mater. 2003, 15 (16), 3142–3147. 10.1021/cm034161o. DOI

Abdelhady A. L.; Malik M. A.; O’Brien P. Iso-Propylthiobiuret-Copper and Indium Complexes as Novel Precursors for Colloidal Synthesis of CuInS2 Nanoparticles. J. Mater. Chem. 2012, 22 (9), 3781–3785. 10.1039/c2jm15460a. DOI

Panthani M. G.; Akhavan V.; Goodfellow B.; Schmidtke J. P.; Dunn L.; Dodabalapur A.; Barbara P. F.; Korgel B. A. Synthesis of CuInS2, CuInSe2, and Cu(Inxga1-X)Se-2 (Cigs) Nanocrystal ″Inks″ for Printable Photovoltaics. J. Am. Chem. Soc. 2008, 130 (49), 16770–16777. 10.1021/ja805845q. PubMed DOI

Zhong H. Z.; Zhou Y.; Ye M. F.; He Y. J.; Ye J. P.; He C.; Yang C. H.; Li Y. F. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals. Chem. Mater. 2008, 20 (20), 6434–6443. 10.1021/cm8006827. DOI

Peng Z. Y.; Liu Y. L.; Shu W.; Chen K. Q.; Chen W. Synthesis of Various Sized CuInS2 Quantum Dots and Their Photovoltaic Properties as Sensitizers for TiO2 Photoanodes. Eur. J. Inorg. Chem. 2012, 2012 (32), 5239–5244. 10.1002/ejic.201200495. DOI

Nairn J. J.; Shapiro P. J.; Twamley B.; Pounds T.; von Wandruszka R.; Fletcher T. R.; Williams M.; Wang C. M.; Norton M. G. Preparation of Ultrafine Chalcopyrite Nanoparticles Via the Photochemical Decomposition of Molecular Single-Source Precursors. Nano Lett. 2006, 6 (6), 1218–1223. 10.1021/nl060661f. PubMed DOI

Norako M. E.; Franzman M. A.; Brutchey R. L. Growth Kinetics of Monodisperse Cu-In-S Nanocrystals Using a Dialkyl Disulfide Sulfur Source. Chem. Mater. 2009, 21 (18), 4299–4304. 10.1021/cm9015673. DOI

Xie R. G.; Rutherford M.; Peng X. G. Formation of High-Quality I-Iii-Vi Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131 (15), 5691–5697. 10.1021/ja9005767. PubMed DOI

Pan D. C.; An L. J.; Sun Z. M.; Hou W.; Yang Y.; Yang Z. Z.; Lu Y. F. Synthesis of Cu-In-S Ternary Nanocrystals with Tunable Structure and Composition. J. Am. Chem. Soc. 2008, 130 (17), 5620–5621. 10.1021/ja711027j. PubMed DOI

Nakamura H.; Kato W.; Uehara M.; Nose K.; Omata T.; Otsuka-Yao-Matsuo S.; Miyazaki M.; Maeda H. Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System. Chem. Mater. 2006, 18 (14), 3330–3335. 10.1021/cm0518022. DOI

Batabyal S. K.; Tian L.; Venkatram N.; Ji W.; Vittal J. J. Phase-Selective Synthesis of CuInS2 Nanocrystals. J. Phys. Chem. C 2009, 113 (33), 15037–15042. 10.1021/jp905234y. DOI

Booth M.; Peel R.; Partanen R.; Hondow N.; Vasilca V.; Jeuken L. J. C.; Critchley K. Amphipol-Encapsulated CuInS2/ZnS Quantum Dots with Excellent Colloidal Stability. Rsc. Adv. 2013, 3 (43), 20559–20566. 10.1039/c3ra43846e. DOI

Tanaka M.; Critchley K.; Matsunaga T.; Evans S. D.; Staniland S. S. Fabrication of Lipid Tubules with Embedded Quantum Dots by Membrane Tubulation Protein. Small 2012, 8 (10), 1590–1595. 10.1002/smll.201102446. PubMed DOI

Marin R.; Vivian A.; Skripka A.; Migliori A.; Morandi V.; Enrichi F.; Vetrone F.; Ceroni P.; Aprile C.; Canton P. Mercaptosilane-Passivated Cuins Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Appl. Nano Mater. 2019, 2 (4), 2426–2436. 10.1021/acsanm.9b00317. DOI

Shrake R.; Demillo V. G.; Ahmadiantehrani M.; Zhu X. S.; Publicover N. G.; Hunter K. W. Facilitated Preparation of Bioconjugatable Zwitterionic Quantum Dots Using Dual-Lipid Encapsulation. J. Colloid Interface Sci. 2015, 437, 140–146. 10.1016/j.jcis.2014.09.020. PubMed DOI PMC

Jin Y. R.; Liu Y.; Jiang F. L. Positive Sorption Behaviors in the Ligand Exchanges for Water-Soluble Quantum Dots and a Strategy for Specific Targeting. ACS Appl. Mater. Interfaces 2021, 13 (43), 51746–51758. 10.1021/acsami.1c15022. PubMed DOI

Choi J.; Choi W.; Jeon D. Y. Ligand-Exchange-Ready CuInS/ZnS Quantum Dots Via Surface-Ligand Composition Control for Film-Type Display Devices. ACS Appl. Nano Mater. 2019, 2 (9), 5504–5511. 10.1021/acsanm.9b01085. DOI

Li L. A.; Pandey A.; Werder D. J.; Khanal B. P.; Pietryga J. M.; Klimov V. I. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. Soc. 2011, 133 (5), 1176–1179. 10.1021/ja108261h. PubMed DOI

Ghosh S.; Mukherjee S.; Mandal S.; De C. K.; Mardanya S.; Saha A.; Mandal P. K. Beneficial Intrinsic Hole Trapping and Its Amplitude Variation in a Highly Photoluminescent Toxic-Metal-Free Quantum Dot. J. Phys. Chem. Lett. 2023, 14 (1), 260–266. 10.1021/acs.jpclett.2c03373. PubMed DOI

Cumberland S. L.; Hanif K. M.; Javier A.; Khitrov G. A.; Strouse G. F.; Woessner S. M.; Yun C. S. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chem. Mater. 2002, 14 (4), 1576–1584. 10.1021/cm010709k. DOI

Li L.; Daou T. J.; Texier I.; Tran T. K. C.; Nguyen Q. L.; Reiss P. Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for in Vivo Imaging. Chem. Mater. 2009, 21 (12), 2422–2429. 10.1021/cm900103b. DOI

Knowles K. E.; Nelson H. D.; Kilburn T. B.; Gamelin D. R. Singlet-Triplet Splittings in the Luminescent Excited States of Colloidal Cu:CdSe, Cu:InP, and Cuins Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons. J. Am. Chem. Soc. 2015, 137 (40), 13138–13147. 10.1021/jacs.5b08547. PubMed DOI

Chen B. K.; Zhong H. Z.; Zhang W. Q.; Tan Z. A.; Li Y. F.; Yu C. R.; Zhai T. Y.; Bando Y. S.; Yang S. Y.; Zou B. S. Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance. Adv. Funct. Mater. 2012, 22 (10), 2081–2088. 10.1002/adfm.201102496. DOI

Uehara M.; Watanabe K.; Tajiri Y.; Nakamura H.; Maeda H. Synthesis of CuInS2 Fluorescent Nanocrystals and Enhancement of Fluorescence by Controlling Crystal Defect. J. Chem. Phys. 2008, 129 (13), 134709.10.1063/1.2987707. PubMed DOI

Chen H.; Wang C. Y.; Wang J. T.; Hu X. P.; Zhou S. X. First-Principles Study of Point Defects in Solar Cell Semiconductor CuInS2. J. Appl. Phys. 2012, 112 (8), 08451310.1063/1.4762001. DOI

Huang D.; Persson C. Stability of the Bandgap in Cu-Poor CuInSe2. J. Phys.: Condens. Matter 2012, 24 (45), 45550310.1088/0953-8984/24/45/455503. PubMed DOI

Vidal J.; Botti S.; Olsson P.; Guillemoles J. F.; Reining L. Strong Interplay between Structure and Electronic Properties in CuIn(S, Se)(2): A First-Principles Study. Phys. Rev. Lett. 2010, 104 (5), 05640110.1103/PhysRevLett.104.056401. PubMed DOI

Kraatz I. T.; Booth M.; Whitaker B. J.; Nix M. G. D.; Critchley K. Sub-Bandgap Emission and Lntraband Defect-Related Excited-State Dynamics in Colloidal CuInS2/ZnS Quantum Dots Revealed by Femtosecond Pump-Dump-Probe Spectroscopy. J. Phys. Chem. C 2014, 118 (41), 24102–24109. 10.1021/jp5065374. DOI

Zhang S. B.; Wei S. H.; Zunger A.; Katayama-Yoshida H. Defect Physics of the CuInSe2 Chalcopyrite Semiconductor. Phys. Rev. B 1998, 57 (16), 9642–9656. 10.1103/PhysRevB.57.9642. DOI

Hofhuis J.; Schoonman J.; Goossens A. Elucidation of the Excited-State Dynamics in CuInS2 Thin Films. J. Phys. Chem. C 2008, 112 (38), 15052–15059. 10.1021/jp803307e. DOI

Nanu M.; Boulch F.; Schoonman J.; Goossens A. Deep-Level Transient Spectroscopy of TiO2/CuInS2 Heterojunctions. Appl. Phys. Lett. 2005, 87 (24), 24210310.1063/1.2140611. DOI

Massé G. Concerning Lattice-Defects and Defect Levels in CuInSe2 and the I-Iii-Vi2 Compounds. J. Appl. Phys. 1990, 68 (5), 2206–2210. 10.1063/1.346523. DOI

Harvie A. J.; Booth M.; Chantry R. L.; Hondow N.; Kepaptsoglou D. M.; Ramasse Q. M.; Evans S. D.; Critchley K. Observation of Compositional Domains within Individual Copper Indium Sulfide Quantum Dots. Nanoscale 2016, 8 (36), 16157–16161. 10.1039/C6NR03269A. PubMed DOI PMC

Nam D. E.; Song W. S.; Yang H. Noninjection, One-Pot Synthesis of Cu-Deficient CuInS2/ZnS Core/Shell Quantum Dots and Their Fluorescent Properties. J. Colloid Interface Sci. 2011, 361 (2), 491–496. 10.1016/j.jcis.2011.05.058. PubMed DOI

Liu S. Y.; Zhang H.; Qiao Y.; Su X. G. One-Pot Synthesis of Ternary CuInS2 Quantum Dots with near-Infrared Fluorescence in Aqueous Solution. Rsc. Adv. 2012, 2 (3), 819–825. 10.1039/C1RA00802A. DOI

Song W. S.; Yang H. Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots. Chem. Mater. 2012, 24 (10), 1961–1967. 10.1021/cm300837z. DOI

Xie B. B.; Hu B. B.; Jiang L. F.; Li G.; Du Z. L. The Phase Transformation of CuInS2 from Chalcopyrite to Wurtzite. Nanoscale Res. Lett. 2015, 10, 8610.1186/s11671-015-0800-z. PubMed DOI PMC

Zhong H. Z.; Lo S. S.; Mirkovic T.; Li Y. C.; Ding Y. Q.; Li Y. F.; Scholes G. D. Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS2 Nanocrystals and Their Size-Dependent Properties. ACS Nano 2010, 4 (9), 5253–5262. 10.1021/nn1015538. PubMed DOI

van Stokkum I. H.; Larsen D. S.; van Grondelle R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta 2004, 1657 (2–3), 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI

Szymura M.; Duda M.; Karpinska M.; Kazimierczuk T.; Minikayev R.; Sobczak K.; Parlinska-Wojtan M.; Klopotowski L. Low-Temperature Photoluminescence Dynamics Reveal the Mechanism of Light Emission by Colloidal Cuins2 Quantum Dots. J. Phys. Chem. C 2023, 127 (14), 6768–6776. 10.1021/acs.jpcc.3c00536. DOI

Dostál J.; Mancal T.; Augulis R.; Vácha F.; Psencík J.; Zigmantas D. Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes. J. Am. Chem. Soc. 2012, 134 (28), 11611–11617. 10.1021/ja3025627. PubMed DOI

Giansante C.; Infante I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. J. Phys. Chem. Lett. 2017, 8 (20), 5209–5215. 10.1021/acs.jpclett.7b02193. PubMed DOI PMC

Zigmantas D.; Polívka T.; Persson P.; Sundström V. Ultrafast Laser Spectroscopy Uncovers Mechanisms of Light Energy Conversion in Photosynthesis and Sustainable Energy Materials. Chem. Phys. Rev. 2022, 3 (4), 04130310.1063/5.0092864. DOI

Dostál J.; Psencík J.; Zigmantas D. Mapping of the Energy Flow through the Entire Photosynthetic Apparatus. Nat. Chem. 2016, 8 (7), 705–710. 10.1038/nchem.2525. PubMed DOI

Snee P. T. Semiconductor Quantum Dot Fret: Untangling Energy Transfer Mechanisms in Bioanalytical Assays. Trends Anal. Chem. 2020, 123, 11575010.1016/j.trac.2019.115750. DOI

Matenová M.; Horhoiu V. L.; Dang F. X.; Pospisil P.; Alster J.; Burda J. V.; Balaban T. S.; Psencik J. Energy Transfer in Aggregates of Bacteriochlorophyll Self-Assembled with Azulene Derivatives. Phys. Chem. Chem. Phys. 2014, 16 (31), 16755–16764. 10.1039/c4cp01311e. PubMed DOI

Tauc J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3 (1), 37–46. 10.1016/0025-5408(68)90023-8. DOI

Valenta J. Determination of Absolute Quantum Yields of Luminescing Nanomaterials over a Broad Spectral Range: From the Integrating Sphere Theory to the Correct Methodology. Nanosci. Methods 2014, 3 (1), 11–27. 10.1080/21642311.2014.884288. DOI

Alster J.Study of Light-Harvesting Antennae Based on Bacteriochlorophyll Aggregates, Doctoral Thesis, Charles University: Prague, 2011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...