Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

. 2016 Mar ; 5 (3) : e1088631. [epub] 20150902

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27141345

Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.

Gustave Roussy Cancer Campus Villejuif France

Gustave Roussy Cancer Campus Villejuif France; INSERM U1015 CICBT507 Villejuif France

INSERM U1138 Paris France; Equipe 13 Center de Recherche des Cordeliers Paris France; Université Pierre et Marie Curie Paris 6 Paris France

INSERM U1138 Paris France; Gustave Roussy Cancer Campus Villejuif France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France

INSERM U1138 Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France; Metabolomics and Cell Biology Platforms Gustave Roussy Cancer Campus Villejuif France; Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden

INSERM U1138 Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Gustave Roussy Cancer Campus Villejuif France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France

INSERM U1138 Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Laboratory of Integrative Cancer Immunology Center de Recherche des Cordeliers Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France

Sotio Prague Czech Republic; Dept of Immunology 2nd Faculty of Medicine and University Hospital Motol Charles University Prague Czech Republic

Zobrazit více v PubMed

Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626 PubMed DOI

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P et al.. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508; PMID:25537519; http://dx.doi.org/10.18632/oncotarget.2998 PubMed DOI PMC

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/10.1126/science.1203486 PubMed DOI

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI

Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9:57-63; PMID:19052556; http://dx.doi.org/10.1038/nrc2541 PubMed DOI

Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z et al.. Toll-like receptors in tumor immunotherapy. Clin Cancer Res 2007; 13:5280-9; PMID:17875756; http://dx.doi.org/10.1158/1078-0432.CCR-07-1378 PubMed DOI PMC

Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:24083080; http://dx.doi.org/10.4161/onci.25238 PubMed DOI PMC

Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al.. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179 PubMed DOI PMC

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34:637-50; PMID:21616434; http://dx.doi.org/10.1016/j.immuni.2011.05.006 PubMed DOI

Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9:293-307; PMID:20380038; http://dx.doi.org/10.1038/nrd3203 PubMed DOI

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH et al.. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995; 270:1804-6; PMID:8525370; http://dx.doi.org/10.1126/science.270.5243.1804 PubMed DOI

Gomez-Gomez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003-11; PMID:10911994; http://dx.doi.org/10.1016/S1097-2765(00)80265-8 PubMed DOI

Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 2005; 102:9577-82; PMID:15976025; http://dx.doi.org/10.1073/pnas.0502272102 PubMed DOI PMC

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4:499-511; PMID:15229469; http://dx.doi.org/10.1038/nri1391 PubMed DOI

Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14:546-58; PMID:25060580; http://dx.doi.org/10.1038/nri3713 PubMed DOI

Wang J, Lin D, Peng H, Shao J, Gu J. Cancer-derived immunoglobulin G promotes LPS-induced proinflammatory cytokine production via binding to TLR4 in cervical cancer cells. Oncotarget 2014; 5:9727-43; PMID:25179302; http://dx.doi.org/10.18632/oncotarget.2359 PubMed DOI PMC

Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94; PMID:23567086; http://dx.doi.org/10.1016/j.jhep.2013.03.033 PubMed DOI

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:23151605; http://dx.doi.org/10.1038/nrc3380 PubMed DOI

Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:23175281; http://dx.doi.org/10.1038/nrm3479 PubMed DOI

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137 PubMed DOI PMC

Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V et al.. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34:856-80; PMID:25712477; http://dx.doi.org/10.15252/embj.201490784 PubMed DOI PMC

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI

Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L et al.. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol 2015; 6:402; PMID:26300886; http://dx.doi.org/10.3389/fimmu.2015.00402 PubMed DOI PMC

Hoffman ES, Smith RE, Renaud RC Jr. From the analyst's couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4:879-80; PMID:16299917; http://dx.doi.org/10.1038/nrd1880 PubMed DOI

Hsu JW, Yin PN, Wood R, Messing J, Messing E, Lee YF. One α, 25-dihydroxylvitamin D3 promotes Bacillus Calmette-Guerin immunotherapy of bladder cancer. Oncotarget 2013; 4:2397-406; PMID:24353168; http://dx.doi.org/10.18632/oncotarget.1494 PubMed DOI PMC

Okamoto H, Shoin S, Koshimura S, Shimizu R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn J Microbiol 1967; 11:323-6; PMID:4875331; http://dx.doi.org/10.1111/j.1348-0421.1967.tb00350.x PubMed DOI

Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR et al.. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374:301-14; PMID:19586656; http://dx.doi.org/10.1016/S0140-6736(09)61248-4 PubMed DOI

Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: Basics and implications. Oncoimmunology 2012; 1:995-6; PMID:23162784; http://dx.doi.org/10.4161/onci.20011 PubMed DOI PMC

Huang SW, Kao JK, Wu CY, Wang ST, Lee HC, Liang SM, Chen YJ, Shieh JJ. Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells. Oncotarget 2014; 5:1363-81; PMID:24658058; http://dx.doi.org/10.18632/oncotarget.1734 PubMed DOI PMC

Walter A, Schafer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, Schönewolf N, Dummer R, Bloch W, Werner S et al.. Aldara activates TLR7-independent immune defence. Nat Commun 2013; 4:1560; PMID:23463003; http://dx.doi.org/10.1038/ncomms2566 PubMed DOI

Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 2012; 13:343-51; PMID:22430787; http://dx.doi.org/10.1038/ni.2224 PubMed DOI

Agrawal S, Kandimalla ER. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans 2007; 35:1461-7; PMID:18031246; http://dx.doi.org/10.1042/BST0351461 PubMed DOI

Kandimalla ER, Bhagat L, Li Y, Yu D, Wang D, Cong YP, Song SS, Tang JX, Sullivan T, Agrawal S. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2′-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc Natl Acad Sci U S A 2005; 102:6925-30; PMID:15860583; http://dx.doi.org/10.1073/pnas.0501729102 PubMed DOI PMC

Machiels JP, Kaminsky MC, Keller U, Brummendorf TH, Goddemeier T, Forssmann U, Delord JP. Phase Ib trial of the Toll-like receptor 9 agonist IMO-2055 in combination with 5-fluorouracil, cisplatin, and cetuximab as first-line palliative treatment in patients with recurrent/metastatic squamous cell carcinoma of the head and neck. Invest New Drugs 2013; 31(5):1207-16; PMID:23397499; http://dx.doi.org/1761668310.1007/s10637-013-9933-z PubMed DOI

de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F et al.. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 2007; 67:6253-62; PMID:17616683; http://dx.doi.org/10.1158/0008-5472.CAN-07-0538 PubMed DOI

Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:23482847; http://dx.doi.org/10.4161/onci.22789 PubMed DOI PMC

Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/10.4161/onci.27048 PubMed DOI PMC

Smith DA, Conkling P, Richards DA, Nemunaitis JJ, Boyd TE, Mita AC, de La Bourdonnaye G, Wages D, Bexon AS. Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol Immunother 2014; 63:787-96; PMID:24770667; http://dx.doi.org/10.1007/s00262-014-1547-6 PubMed DOI PMC

Chan E, Kwak EL, Hwang J, Heiskala M, de La Bourdonnaye G, Mita M. Open-label phase 1b study of FOLFIRI plus cetuximab plus IMO-2055 in patients with colorectal cancer who have progressed following chemotherapy for advanced or metastatic disease. Cancer Chemother Pharmacol 2015; 75:701-9; PMID:25627002; http://dx.doi.org/10.1007/s00280-015-2682-2 PubMed DOI

Falke J, Lammers RJ, Arentsen HC, Ravic M, Pozzi R, Cornel EB, Vergunst H, de Reijke TM, Witjes JA. Results of a Phase 1 Dose Escalation Study of Intravesical TMX-101 in Patients with Nonmuscle Invasive Bladder Cancer. J Urol 2013; 189:2077-82; PMID:23206424; http://dx.doi.org/10.1016/j.juro.2012.11.150 PubMed DOI

Arentsen HC, Hulsbergen-Van de Kaa CA, Jansen CF, Maj R, Leoni LM, Oosterwijk E, Witjes JA. Pharmacokinetics and toxicity of intravesical TMX-101: a preclinical study in pigs. BJU Int 2011; 108:1210-4; PMID:21314886; http://dx.doi.org/10.1111/j.1464-410X.2010.10055.x PubMed DOI

Arends TJ, Lammers RJ, Falke J, van der Heijden AG, Rustighini I, Pozzi R, Ravic M, Eisenhardt A, Vergunst H, Witjes JA. Pharmacokinetic, Pharmacodynamic, and Activity Evaluation of TMX-101 in a Multicenter Phase 1 Study in Patients With Papillary Non-Muscle-Invasive Bladder Cancer. Clin Genitourin Cancer 2015; 13:204-9 e2; PMID:25660383; http://dx.doi.org/10.1016/j.clgc.2014.12.010 PubMed DOI

Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrie M, Meng Y, Richard M, Parizot C, Laigle-Donadey F et al.. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 2010; 12:401-8; PMID:20308317; http://dx.doi.org/10.1093/neuonc/nop047 PubMed DOI PMC

Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M, Lacomblez L, Taillibert S et al.. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 2006; 8:60-6; PMID:16443949; http://dx.doi.org/10.1215/S1522851705000475 PubMed DOI PMC

Meng Y, Carpentier AF, Chen L, Boisserie G, Simon JM, Mazeron JJ, Delattre JY. Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 2005; 116:992-7; PMID:15856470; http://dx.doi.org/10.1002/ijc.21131 PubMed DOI

Ursu R, Taillibert S, Banissi C, Vicaut E, Bailon O, Le Rhun E, Guillamo JS, Psimaras D, Tibi A, Sacko A et al.. Immunotherapy with CpG-ODN in neoplastic meningitis: A phase I trial. Cancer Sci 2015; 106:1212-8; PMID:26094710; http://dx.doi.org/10.1111/cas.12724 PubMed DOI PMC

Wittig B, Schmidt M, Scheithauer W, Schmoll HJ. MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: from bench to bedside. Crit Rev Oncol Hematol 2015; 94:31-44; PMID:25577571; http://dx.doi.org/10.1016/j.critrevonc.2014.12.002 PubMed DOI

Tschaika M, Schmoll H, Riera-Knorrenschild J, Nitsche D, Trojan J, Kröning H, Mayer F, Weith E, Schroff M, Krikov M et al.. IMPACT study: A phase II-III clinical study with the immunomodulator MGN1703 in patients with advanced colorectal carcincoma. J Clin Oncol 2012; 30:abstr 633

Tschaika M, Schmoll H, Scheithauer W, Mayer F, Schroff M, Schmidt M, Wittig B. Preliminary results of an ongoing phase II/III clinical study of the TLR9 agonist MGN1703 in patients with advanced colorectal carcinoma with disease control after first-line induction therapy (IMPACT Study). J Clin Oncol 2011; 29:abstr 618

Schmoll HJ, Wittig B, Arnold D, Riera-Knorrenschild J, Nitsche D, Kroening H, Mayer F, Andel J, Ziebermayr R, Scheithauer W. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: a randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol 2014; 140:1615-24; PMID:24816725; http://dx.doi.org/10.1007/s00432-014-1682-7 PubMed DOI PMC

Weihrauch MR, Richly H, von Bergwelt-Baildon MS, Becker HJ, Schmidt M, Hacker UT, Shimabukuro-Vornhagen A, Holtick U, Nokay B, Schroff M et al.. Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer 2015; 51:146-56; PMID:25480557; http://dx.doi.org/10.1016/j.ejca.2014.11.002 PubMed DOI

Fox CB, Moutaftsi M, Vergara J, Desbien AL, Nana GI, Vedvick TS, Coler RN, Reed SG. TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses. Vaccine 2013; 31:5848-55; PMID:24120675; http://dx.doi.org/10.1016/j.vaccine.2013.09.069 PubMed DOI

Schneider LP, Schoonderwoerd AJ, Moutaftsi M, Howard RF, Reed SG, de Jong EC, Teunissen MB. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells. Vaccine 2012; 30:4216-24; PMID:22542815; http://dx.doi.org/10.1016/j.vaccine.2012.04.051 PubMed DOI

Orr MT, Duthie MS, Windish HP, Lucas EA, Guderian JA, Hudson TE, Shaverdian N, O'Donnell J, Desbien AL, Reed SG et al.. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 2013; 43:2398-408; PMID:23716300; http://dx.doi.org/10.1002/eji.201243124 PubMed DOI PMC

Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL et al.. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2010; 2:53ra74; PMID:20944089; http://dx.doi.org/10.1126/scitranslmed.3001094 PubMed DOI PMC

Bhatia S, Ibrani D, Vandeven N, Miller N, Shinohara M, Byrd D, Parvathaneni U, Shantha E, Afanasiev OK, Donahue M et al.. Pilot study of intratumoral G100, toll-like receptor-4 (TLR4) agonist, therapy in patients with Merkel cell carcinoma (MCC). ASCO Meeting Abstracts 2015; 33:3083

Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099-103; PMID:11323673; http://dx.doi.org/10.1038/35074106 PubMed DOI

Kojouharov BM, Brackett CM, Veith JM, Johnson CP, Gitlin II, Toshkov IA, Gleiberman AS, Gudkov AV, Burdelya LG. Toll-like receptor-5 agonist Entolimod broadens the therapeutic window of 5-fluorouracil by reducing its toxicity to normal tissues in mice. Oncotarget 2014; 5:802-14; PMID:24583651; http://dx.doi.org/10.18632/oncotarget.1773 PubMed DOI PMC

Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA et al.. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320:226-30; PMID:18403709; http://dx.doi.org/10.1126/science.1154986 PubMed DOI PMC

Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335:859-64; PMID:22344444; http://dx.doi.org/10.1126/science.1215584 PubMed DOI PMC

Ding X, Bian G, Leigh ND, Qiu J, McCarthy PL, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A TLR5 agonist enhances CD8(+) T cell-mediated graft-versus-tumor effect without exacerbating graft-versus-host disease. J Immunol 2012; 189:4719-27; PMID:23045613; http://dx.doi.org/10.4049/jimmunol.1201206 PubMed DOI

Bakhribah H, Dy GK, Ma WW, Zhao Y, Opyrchal M, Purmal A, Gollnick S, Brady WE, Fetterly GJ, Ngamphaiboon N, Reungwetwattana T et al.. A phase I study of the toll-like receptor 5 (TLR5) agonist, entolimod in patients (pts) with advanced cancers. ASCO Meeting Abstracts 2015; 33:3063

Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015; 520:702-5; PMID:25686612; http://dx.doi.org/10.1038/nature14138 PubMed DOI

Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ et al.. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014; 514:638-41; PMID:25274297; http://dx.doi.org/10.1038/nature13823 PubMed DOI PMC

Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C et al.. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507:109-13; PMID:24572365; http://dx.doi.org/10.1038/nature13111 PubMed DOI

Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S et al.. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003; 424:743-8; PMID:12872135; http://dx.doi.org/10.1038/nature01889 PubMed DOI

Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K et al.. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301:640-3; PMID:12855817; http://dx.doi.org/10.1126/science.1087262 PubMed DOI

Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N et al.. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434:772-7; PMID:15800576; http://dx.doi.org/10.1038/nature03464 PubMed DOI

Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 2012; 12:168-79; PMID:22301850; http://dx.doi.org/10.1038/nri3151 PubMed DOI PMC

Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV et al.. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630; PMID:25636800; http://dx.doi.org/10.1126/science.aaa2630 PubMed DOI

Scheeren FA, Kuo AH, van Weele LJ, Cai S, Glykofridis I, Sikandar SS, Zabala M, Qian D, Lam JS, Johnston D et al.. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 2014; 16:1238-48; PMID:25362351; http://dx.doi.org/10.1038/ncb3058 PubMed DOI

Dominguez-Villar M, Gautron AS, de Marcken M, Keller MJ, Hafler DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol 2015; 16:118-28; PMID:25401424; http://dx.doi.org/10.1038/ni.3036 PubMed DOI PMC

Skabytska Y, Wolbing F, Gunther C, Koberle M, Kaesler S, Chen KM, Guenova E, Demircioglu D, Kempf WE, Volz T et al.. Cutaneous innate immune sensing of Toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity 2014; 41:762-75; PMID:25456159; http://dx.doi.org/10.1016/j.immuni.2014.10.009 PubMed DOI

Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y, Shimizu Y, Hosaka T, Goto M, Kato N et al.. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 2014; 41:375-88; PMID:25238095; http://dx.doi.org/10.1016/j.immuni.2014.08.011 PubMed DOI

Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampé R et al.. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014; 158:506-21; PMID:25083866; http://dx.doi.org/10.1016/j.cell.2014.04.054 PubMed DOI PMC

Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, Brencicova E, Escovar-Fadul X, Nguyen JM, Cadungog MG et al.. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015; 27:27-40; PMID:25533336; http://dx.doi.org/10.1016/j.ccell.2014.11.009 PubMed DOI PMC

Yang H, Wang H, Ju Z, Ragab AA, Lundback P, Long W, Valdes-Ferrer SI, He M, Pribis JP, Li J et al.. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med 2015; 212:5-14; PMID:25559892; http://dx.doi.org/10.1084/jem.20141318 PubMed DOI PMC

Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R et al.. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. J Exp Med 2014; 211:1215-29; PMID:24863068; http://dx.doi.org/10.1084/jem.20130914 PubMed DOI PMC

Mancek-Keber M, Frank-Bertoncelj M, Hafner-Bratkovic I, Smole A, Zorko M, Pirher N, Hayer S, Kralj-Iglič V, Rozman B, Ilc N et al.. Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Sci Signal 2015; 8:ra60; PMID:26082436; http://dx.doi.org/10.1126/scisignal.2005860 PubMed DOI

Daniele SG, Beraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded alpha-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 2015; 8:ra45; PMID:25969543; http://dx.doi.org/10.1126/scisignal.2005965 PubMed DOI PMC

Kolb JP, Casella CR, SenGupta S, Chilton PM, Mitchell TC. Type I interferon signaling contributes to the bias that Toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Sci Signal 2014; 7:ra108; PMID:25389373; http://dx.doi.org/10.1126/scisignal.2005442 PubMed DOI PMC

Chatterjee S, Crozet L, Damotte D, Iribarren K, Schramm C, Alifano M, Lupo A, Cherfils-Vicini J, Goc J, Katsahian S et al.. TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res 2014; 74:5008-18; PMID:25074614; http://dx.doi.org/10.1158/0008-5472.CAN-13-2698 PubMed DOI

Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, London WT, Rice J. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis 1975; 132:434-9; PMID:810520; http://dx.doi.org/10.1093/infdis/132.4.434 PubMed DOI

Ming Lim C, Stephenson R, Salazar AM, Ferris RL. TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR head and neck cancer cells. Oncoimmunology 2013; 2:e24677; PMID:23894722; http://dx.doi.org/10.4161/onci.23187 PubMed DOI PMC

Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, Smits EL. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther 2015; 146:120-31; PMID:25281915; http://dx.doi.org/10.1016/j.pharmthera.2014.09.010 PubMed DOI

Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; PMID:24498550; http://dx.doi.org/10.4161/onci.26621 PubMed DOI PMC

Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R et al.. Trial Watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424; PMID:25941593; http://dx.doi.org/2428602010.4161/21624011.2014.963424 PubMed DOI PMC

Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G et al.. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771; PMID:24286020; http://dx.doi.org/10.4161/onci.25771 PubMed DOI PMC

Mavilio D, Lugli E. Inhibiting the inhibitors: Checkpoints blockade in solid tumors. Oncoimmunology 2013; 2:e26535; PMID:24244910; http://dx.doi.org/10.4161/onci.26535 PubMed DOI PMC

Peng W, Lizee G, Hwu P. Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncoimmunology 2013; 2:e22691; PMID:23524510; http://dx.doi.org/10.4161/onci.22691 PubMed DOI PMC

Linch SN, Redmond WL. Combined OX40 ligation plus CTLA-4 blockade: More than the sum of its parts. Oncoimmunology 2014; 3:e28245; PMID:25050194; http://dx.doi.org/10.4161/onci.28245 PubMed DOI PMC

Sandin LC, Eriksson F, Ellmark P, Loskog AS, Totterman TH, Mangsbo SM. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology 2014; 3:e27614; PMID:24701377; http://dx.doi.org/10.4161/onci.27614 PubMed DOI PMC

Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology 2014; 3:e27255; PMID:24605266; http://dx.doi.org/10.4161/onci.27255 PubMed DOI PMC

Kandalaft LE, Powell DJ Jr., Chiang CL, Tanyi J, Kim S, Bosch M, Montone K, Mick R, Levine BL, Torigian DA et al.. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2013; 2:e22664; PMID:23482679; http://dx.doi.org/10.4161/onci.22664 PubMed DOI PMC

Khodadoust MS, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky R, Levy R. Phase I/II study of intratumoral injection of SD-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. ASCO Meeting Abstracts 2015; 33:TPS8604

Zhang Y, Lin A, Zhang C, Tian Z, Zhang J. Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother 2014; 63:357-67; PMID:24452201; http://dx.doi.org/10.1007/s00262-014-1518-y PubMed DOI PMC

Navabi H, Jasani B, Reece A, Clayton A, Tabi Z, Donninger C, Mason M, Adams M. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 2009; 27:107-15; PMID:18977262; http://dx.doi.org/10.1016/j.vaccine.2008.10.024 PubMed DOI

Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K, Bartůňková J, Špíšek R. Poly I: C-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials. J Transl Med 2011; 9:223; PMID:22208910; http://dx.doi.org/10.1186/1479-5876-9-223 PubMed DOI PMC

Cohen PA, Northfelt DW, Weiss GJ, Von Hoff DD, Manjarrez K, Dietsch G, Manjarrez KL, Randall TD, Hershberg RM. Phase I clinical trial of VTX-2337, a selective toll-like receptor 8 (TLR8) agonist, in patients with advanced solid tumors. J Clin Oncol 2011; 29:abstr 2537; http://dx.doi.org/10.1200/JCO.2010.34.1693. DOI

Lu H, Dietsch GN, Matthews MA, Yang Y, Ghanekar S, Inokuma M, Suni M, Maino VC, Henderson KE, Howbert JJ et al.. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 2012; 18:499-509; PMID:22128302; http://dx.doi.org/10.1158/1078-0432.CCR-11-1625 PubMed DOI

Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:24800173; http://dx.doi.org/10.4161/onci.27878 PubMed DOI PMC

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; PMID:25941621; http://dx.doi.org/10.4161/21624011.2014.955691 PubMed DOI PMC

Kepp O, Senovilla L, Kroemer G. Immunogenic cell death inducers as anticancer agents. Oncotarget 2014; 5:5190-1; PMID:25114034; http://dx.doi.org/10.18632/oncotarget.2266 PubMed DOI PMC

Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 T cells. Oncoimmunology 2013; 2:e23991; PMID:23734334; http://dx.doi.org/10.4161/onci.23991 PubMed DOI PMC

Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015; 23:32-8; PMID:26047524; http://dx.doi.org/10.1016/j.coph.2015.05.011 PubMed DOI PMC

Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol 2015; 42:474-83; PMID:25965366; http://dx.doi.org/10.1053/j.seminoncol.2015.02.007 PubMed DOI

Topazio L, Miano R, Maurelli V, Gaziev G, Gacci M, Iacovelli V, Finazzi-Agr∫ E. Could hyaluronic acid (HA) reduce Bacillus Calmette-Guerin (BCG) local side effects? Results of a pilot study. BMC Urol 2014; 14:64; PMID:25123116; http://dx.doi.org/10.1186/1471-2490-14-64 PubMed DOI PMC

Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699-716; PMID:22934262; http://dx.doi.org/10.4161/onci.20696 PubMed DOI PMC

Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894-907; PMID:23162757; http://dx.doi.org/10.4161/onci.20931 PubMed DOI PMC

Ruzsa A, Sen M, Evans M, Lee LW, Hideghety K, Rottey S, Klimak P, Holeckova P, Fayette J, Csoszi T et al.. Phase 2, open-label, 1:1 randomized controlled trial exploring the efficacy of EMD 1201081 in combination with cetuximab in second-line cetuximab-naive patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Invest New Drugs 2014; 32:1278-84; PMID:24894651; http://dx.doi.org/10.1007/s10637-014-0117-2 PubMed DOI

Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J et al.. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 2014; 6:232ra51; PMID:24739759; http://dx.doi.org/10.1126/scitranslmed.3008068 PubMed DOI PMC

Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, Cai L, Fang HB, Weiss BM, Badros A et al.. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res 2014; 20:1355-65; PMID:24520093; http://dx.doi.org/10.1158/1078-0432.CCR-13-2817 PubMed DOI PMC

Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M et al.. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 2015; 372:2521-32; PMID:25891173; http://dx.doi.org/10.1056/NEJMoa1503093 PubMed DOI

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E et al.. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372:320-30; PMID:25399552; http://dx.doi.org/10.1056/NEJMoa1412082 PubMed DOI

Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K et al.. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369:122-33; PMID:23724867; http://dx.doi.org/10.1056/NEJMoa1302369 PubMed DOI PMC

Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; PMID:25941597; http://dx.doi.org/10.4161/21624011.2014.967147 PubMed DOI PMC

Poole RM. Pembrolizumab: first global approval. Drugs 2014; 74:1973-81; PMID:25331768; http://dx.doi.org/10.1007/s40265-014-0314-5 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multi-Institutional Evaluation of Pathologists' Assessment Compared to Immunoscore

. 2023 Aug 10 ; 15 (16) : . [epub] 20230810

Trial Watch: Toll-like receptor agonists in cancer immunotherapy

. 2018 ; 7 (12) : e1526250. [epub] 20181011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...