Light-Controlled Multiconfigurational Conductance Switching in a Single 1D Metal-Organic Wire
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38518264
PubMed Central
PMC10993641
DOI
10.1021/acsnano.3c12909
Knihovny.cz E-zdroje
- Klíčová slova
- density functional theory, light-induced switching, molecular chains, one-dimensional system, scanning tunneling microscopy, spin crossover, transport,
- Publikační typ
- časopisecké články MeSH
Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible switches in low-dimensional nanostructures persists. Our work demonstrates multiple, fully reversible plasmon-driven spin-crossover switches in a single π-d metal-organic chain suspended between two electrodes. The plasmonic nanocavity stimulated by external visible light allows for reversible spin crossover between low- and high-spin states of different cobalt centers within the chain. We show that the distinct spin configurations remain stable for minutes under cryogenic conditions and can be nonperturbatively detected by conductance measurements. This multiconfigurational plasmon-driven spin-crossover demonstration extends the available toolset for designing optoelectrical molecular devices based on SCO compounds.
Aix Marseille Université CINaM UMR 7325 CNRS Campus de Luminy 13288 Marseille cedex 09 France
Department of Physics University of Zurich Winterthurerstrasse 190 CH 8057 Zurich Switzerland
Institute of Physics École Polytechnique Fédérale de Lausanne Station 3 CH 1015 Lausanne Switzerland
Institute of Physics of the Czech Academy of Sciences Prague 16200 Czech Republic
Zobrazit více v PubMed
Bogani L.; Wernsdorfer W. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 2008, 7 (3), 179–186. 10.1038/nmat2133. PubMed DOI
Gaita-Ariño A.; Luis F.; Hill S.; Coronado E. Molecular Spins for Quantum Computation. Nat. Chem. 2019, 11 (4), 301–309. 10.1038/s41557-019-0232-y. PubMed DOI
Spin Crossover in Transition Metal Compounds I; Gütlich P.; Goodwin H. A., Eds.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2004; Vol. 233.
Gütlich P.; Goodwin H. A.. Spin Crossover in Transition Metal Compounds II; Topics in Current Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; Vol. 234.
Bertoni R.; Cammarata M.; Lorenc M.; Matar S. F.; Létard J.-F.; Lemke H. T.; Collet E. Ultrafast Light-Induced Spin-State Trapping Photophysics Investigated in Fe(Phen)2(NCS)2 Spin-Crossover Crystal. Acc. Chem. Res. 2015, 48 (3), 774–781. 10.1021/ar500444d. PubMed DOI
Létard J.-F.; Guionneau P.; Goux-Capes L.. Towards Spin Crossover Applications. In Spin Crossover in Transition Metal Compounds III; Gütlich P.; Goodwin H. A., Eds.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2004; pp 221–249.
Real J. A.; Gaspar A. B.; Muñoz M. C. Thermal, Pressure and Light Switchable Spin-Crossover Materials. Dalton Trans. 2005, (12), 2062–2079. 10.1039/b501491c. PubMed DOI
Venkataramani S.; Jana U.; Dommaschk M.; Sönnichsen F. D.; Tuczek F.; Herges R. Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. Science 2011, 331 (6016), 445–448. 10.1126/science.1201180. PubMed DOI
Hendrickson D. N.; Pierpont C. G.. Valence Tautomeric Transition Metal Complexes. In Spin Crossover in Transition Metal Compounds II; Gütlich P.; Goodwin H. A., Eds.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2004; pp 63–95.
Sato O.; Cui A.; Matsuda R.; Tao J.; Hayami S. Photo-Induced Valence Tautomerism in Co Complexes. Acc. Chem. Res. 2007, 40 (5), 361–369. 10.1021/ar600014m. PubMed DOI
Schmidt R. D.; Shultz D. A.; Martin J. D.; Boyle P. D. Goldilocks Effect in Magnetic Bistability: Remote Substituent Modulation and Lattice Control of Photoinduced Valence Tautomerism and Light-Induced Thermal Hysteresis. J. Am. Chem. Soc. 2010, 132 (17), 6261–6273. 10.1021/ja101957c. PubMed DOI
Slota M.; Blankenhorn M.; Heintze E.; Vu M.; Hübner R.; Bogani L. Photoswitchable Stable Charge-Distributed States in a New Cobalt Complex Exhibiting Photo-Induced Valence Tautomerism. Faraday Discuss. 2015, 185 (0), 347–359. 10.1039/C5FD00088B. PubMed DOI
Chastanet G.; Lorenc M.; Bertoni R.; Desplanches C. Light-Induced Spin Crossover—Solution and Solid-State Processes. Comptes Rendus Chimie 2018, 21 (12), 1075–1094. 10.1016/j.crci.2018.02.011. DOI
Chikkaraddy R.; de Nijs B.; Benz F.; Barrow S. J.; Scherman O. A.; Rosta E.; Demetriadou A.; Fox P.; Hess O.; Baumberg J. J. Single-Molecule Strong Coupling at Room Temperature in Plasmonic Nanocavities. Nature 2016, 535 (7610), 127–130. 10.1038/nature17974. PubMed DOI PMC
Hutchison J. A.; Schwartz T.; Genet C.; Devaux E.; Ebbesen T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012, 51 (7), 1592–1596. 10.1002/anie.201107033. PubMed DOI
Dreismann A.; Ohadi H.; del Valle-Inclan Redondo Y.; Balili R.; Rubo Y. G.; Tsintzos S. I.; Deligeorgis G.; Hatzopoulos Z.; Savvidis P. G.; Baumberg J. J. A Sub-Femtojoule Electrical Spin-Switch Based on Optically Trapped Polariton Condensates. Nat. Mater. 2016, 15 (10), 1074–1078. 10.1038/nmat4722. PubMed DOI
Kos D.; Di Martino G.; Boehmke A.; de Nijs B.; Berta D.; Földes T.; Sangtarash S.; Rosta E.; Sadeghi H.; Baumberg J. J. Optical Probes of Molecules as Nano-Mechanical Switches. Nat. Commun. 2020, 11 (1), 5905.10.1038/s41467-020-19703-y. PubMed DOI PMC
Kazuma E.; Jung J.; Ueba H.; Trenary M.; Kim Y. Real-Space and Real-Time Observation of a Plasmon-Induced Chemical Reaction of a Single Molecule. Science 2018, 360 (6388), 521–526. 10.1126/science.aao0872. PubMed DOI
Aradhya S. V.; Venkataraman L. Single-Molecule Junctions beyond Electronic Transport. Nat. Nanotechnol. 2013, 8 (6), 399–410. 10.1038/nnano.2013.91. PubMed DOI
Harding D. J.; Harding P.; Phonsri W. Spin Crossover in Iron(III) Complexes. Coord. Chem. Rev. 2016, 313, 38–61. 10.1016/j.ccr.2016.01.006. DOI
Nguyen M. T.; Jones R. A.; Holliday B. J. Incorporation of Spin-Crossover Cobalt(II) Complexes into Conducting Metallopolymers: Towards Redox-Controlled Spin Change. Polymer 2021, 222, 123658.10.1016/j.polymer.2021.123658. DOI
Kobayashi F.; Hiramatsu T.; Sueyasu K.; Tadokoro M. Proton Conductive Mononuclear Hydrogen-Bonded Cobalt(II) Spin Crossover Complex. Cryst. Growth Des. 2023, 23 (3), 1633–1640. 10.1021/acs.cgd.2c01243. DOI
Drath O.; Boskovic C. Switchable Cobalt Coordination Polymers: Spin Crossover and Valence Tautomerism. Coord. Chem. Rev. 2018, 375, 256–266. 10.1016/j.ccr.2017.11.025. DOI
Wan S.; Li M.; Zhang Z.; Xi H.; Yang H.; Luo Q.; Zhu W.-H. Reversible Light-Driven Magnetic Switching of Salen Cobalt Complex. Sci. China Chem. 2020, 63 (9), 1191–1197. 10.1007/s11426-020-9786-8. DOI
Pascal S.; Siri O. Benzoquinonediimine Ligands: Synthesis, Coordination Chemistry and Properties. Coord. Chem. Rev. 2017, 350, 178–195. 10.1016/j.ccr.2017.06.015. DOI
Frezza F.; Schiller F.; Cahlík A.; Enrique Ortega J.; V. Barth J.; Arnau A.; Blanco-Rey M.; Jelínek P.; Corso M.; Piquero-Zulaica I. Electronic Band Structure of 1D π-d Hybridized Narrow-Gap Metal-Organic Polymers. Nanoscale 2023, 15 (5), 2285–2291. 10.1039/D2NR05828F. PubMed DOI
Santhini V. M.; Wäckerlin C.; Cahlík A.; Ondráček M.; Pascal S.; Matěj A.; Stetsovych O.; Mutombo P.; Lazar P.; Siri O.; Jelínek P. 1D Coordination π-d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew. Chem., Int. Ed. 2021, 60 (1), 439–445. 10.1002/anie.202011462. PubMed DOI
Wäckerlin C.; Cahlík A.; Goikoetxea J.; Stetsovych O.; Medvedeva D.; Redondo J.; Švec M.; Delley B.; Ondráček M.; Pinar A.; Blanco-Rey M.; Kolorenč J.; Arnau A.; Jelínek P. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS Nano 2022, 16 (10), 16402–16413. 10.1021/acsnano.2c05609. PubMed DOI
Kawai S.; Koch M.; Gnecco E.; Sadeghi A.; Pawlak R.; Glatzel T.; Schwarz J.; Goedecker S.; Hecht S.; Baratoff A.; Grill L.; Meyer E. Quantifying the Atomic-Level Mechanics of Single Long Physisorbed Molecular Chains. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (11), 3968–3972. 10.1073/pnas.1319938111. PubMed DOI PMC
Lafferentz L.; Ample F.; Yu H.; Hecht S.; Joachim C.; Grill L. Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length. Science 2009, 323 (5918), 1193–1197. 10.1126/science.1168255. PubMed DOI
Johnson P. B.; Christy R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6 (12), 4370–4379. 10.1103/PhysRevB.6.4370. DOI
Hogue R. W.; Singh S.; Brooker S. Spin Crossover in Discrete Polynuclear Iron(II) Complexes. Chem. Soc. Rev. 2018, 47 (19), 7303–7338. 10.1039/C7CS00835J. PubMed DOI
Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180 (11), 2175–2196. 10.1016/j.cpc.2009.06.022. DOI
Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI
Reecht G.; Scheurer F.; Speisser V.; Dappe Y. J.; Mathevet F.; Schull G. Electroluminescence of a Polythiophene Molecular Wire Suspended between a Metallic Surface and the Tip of a Scanning Tunneling Microscope. Phys. Rev. Lett. 2014, 112 (4), 047403.10.1103/PhysRevLett.112.047403. PubMed DOI
Böckmann H.; Liu S.; Mielke J.; Gawinkowski S.; Waluk J.; Grill L.; Wolf M.; Kumagai T. Direct Observation of Photoinduced Tautomerization in Single Molecules at a Metal Surface. Nano Lett. 2016, 16 (2), 1034–1041. 10.1021/acs.nanolett.5b04092. PubMed DOI
Doležal J.; Canola S.; Hapala P.; de Campos Ferreira R. C.; Merino P.; Švec M. Evidence of Exciton-Libron Coupling in Chirally Adsorbed Single Molecules. Nat. Commun. 2022, 13 (1), 6008.10.1038/s41467-022-33653-7. PubMed DOI PMC
Lee M.; Kazuma E.; Jung J.; Trenary M.; Kim Y. Dissociation of Single O2Molecules on Ag(110) by Electrons, Holes, and Localized Surface Plasmons. Chem. Rec. 2022, 22 (6), e20220001110.1002/tcr.202200011. PubMed DOI
Climent C.; Galego J.; Garcia-Vidal F. J.; Feist J. Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis. Angew. Chem. 2019, 131 (26), 8790–8794. 10.1002/ange.201901926. PubMed DOI PMC
Mock J. J.; Hill R. T.; Degiron A.; Zauscher S.; Chilkoti A.; Smith D. R. Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Lett. 2008, 8 (8), 2245–2252. 10.1021/nl080872f. PubMed DOI PMC
Alves E.; Péchou R.; Coratger R.; Mlayah A. Gap Plasmon Modes and Plasmon-Exciton Coupling in a Hybrid Au/MoSe2/Au Tunneling Junction. Opt. Express, OE 2023, 31 (8), 12549–12561. 10.1364/OE.479620. PubMed DOI
Ren X.; Rinke P.; Blum V.; Wieferink J.; Tkatchenko A.; Sanfilippo A.; Reuter K.; Scheffler M. Resolution-of-Identity Approach to Hartree-Fock, Hybrid Density Functionals, RPA, MP2 and GW with Numeric Atom-Centered Orbital Basis Functions. New J. Phys. 2012, 14 (5), 053020.10.1088/1367-2630/14/5/053020. DOI