Chiral molecular intercalation superlattices

. 2022 Jun ; 606 (7916) : 902-908. [epub] 20220629

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35768590
Odkazy

PubMed 35768590
DOI 10.1038/s41586-022-04846-3
PII: 10.1038/s41586-022-04846-3
Knihovny.cz E-zdroje

The discovery of chiral-induced spin selectivity (CISS) opens up the possibility to manipulate spin orientation without external magnetic fields and enables new spintronic device designs1-4. Although many approaches have been explored for introducing CISS into solid-state materials and devices, the resulting systems so far are often plagued by high inhomogeneity, low spin selectivity or limited stability, and have difficulties in forming robust spintronic devices5-8. Here we report a new class of chiral molecular intercalation superlattices (CMIS) as a robust solid-state chiral material platform for exploring CISS. The CMIS were prepared by intercalating layered two-dimensional atomic crystals (2DACs) (such as TaS2 and TiS2) with selected chiral molecules (such as R-α-methylbenzylamine and S-α-methylbenzylamine). The X-ray diffraction and transmission electron microscopy studies demonstrate highly ordered superlattice structures with alternating crystalline atomic layers and self-assembled chiral molecular layers. Circular dichroism studies show clear chirality-dependent signals between right-handed (R-) and left-handed (S-) CMIS. Furthermore, by using the resulting CMIS as the spin-filtering layer, we create spin-selective tunnelling junctions with a distinct chirality-dependent tunnelling current, achieving a tunnelling magnetoresistance ratio of more than 300 per cent and a spin polarization ratio of more than 60 per cent. With a large family of 2DACs of widely tunable electronic properties and a vast selection of chiral molecules of designable structural motifs, the CMIS define a rich family of artificial chiral materials for investigating the CISS effect and capturing its potential for new spintronic devices.

Komentář v

PubMed

Zobrazit více v PubMed

Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999). PubMed DOI

Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015). PubMed DOI

Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015). PubMed DOI

Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019). PubMed DOI

Kiran, V. et al. Helicenes—a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016). PubMed DOI

Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). PubMed DOI PMC

Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017). DOI

Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020). PubMed DOI

Gardner, M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds (Penguin Books, 1964).

Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012). PubMed DOI

Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb PubMed DOI

Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021). PubMed DOI

Sung, B., De La Cotte, A. & Grelet, E. Chirality-controlled crystallization via screw dislocations. Nat. Commun. 9, 1405 (2018). PubMed DOI PMC

Ziv, A. et al. AFM-based spin-exchange microscopy using chiral molecules. Adv. Mater. 31, 1904206 (2019). DOI

Chen, Z. et al. Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Res. 15, 2741–2745 (2022). DOI

Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). PubMed DOI

Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020). DOI

Yang, S. H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021). DOI

Geim, A. K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). PubMed DOI PMC

Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). PubMed DOI

Huang, L. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018). PubMed DOI

Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). PubMed DOI

Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021). DOI

Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). PubMed DOI

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). PubMed DOI

He, Q. et al. In-situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019). PubMed DOI

Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2022). PubMed DOI

Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H-NbSe DOI

Zong, P. A. et al. Flexible foil of hybrid TaS DOI

Nagelberg, A. S. & Worrell, W. L. A thermodynamic study of sodium-intercalated TaS DOI

Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017). PubMed DOI

Schöllhorn, R. & Weiss, A. Cation exchange reactions and layer solvate complexes of ternary phases M DOI

Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS PubMed DOI PMC

Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS PubMed DOI

Pan, J. et al. Enhanced superconductivity in restacked TaS PubMed DOI

Wu, J. et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS PubMed DOI

Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020). PubMed DOI

Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011). PubMed DOI

Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). DOI

Chua, R. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 33, 2103360 (2021). DOI

Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020). PubMed DOI

Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). PubMed DOI

Wang, Z. et al. Tunneling spin valves based on Fe PubMed DOI

Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). PubMed DOI

Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022). DOI

Du, G. F., Fu, H. H. & Wu, R. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. Phys. Rev. B 102, 35431 (2020). DOI

Fransson, J. Vibrational origin of exchange splitting and chiral-induced spin selectivity. Phys. Rev. B 102, 235416 (2020). DOI

Yildiz, A., Serin, N., Serin, T. & Kasap, M. Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009). DOI

Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975). DOI

Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998). DOI

Luxa, J. et al. 2H→1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem. Eur. J. 23, 8082–8091 (2017). PubMed DOI

Mishra, S. et al. Spin filtering along chiral polymers. Angew. Chem. Int. Ed. 59, 14671–14676 (2020). DOI

Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). PubMed DOI

Ghosh, K. B. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123, 3024–3031 (2019). DOI

Mondal, A. K. et al. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. J. Am. Chem. Soc. 143, 7189–7195 (2021). PubMed DOI PMC

Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018). PubMed DOI

Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015). DOI

Mishra, D. et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl Acad. Sci. USA 110, 14872–14876 (2013). PubMed DOI PMC

Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014). DOI

Mondal, P. C. et al. Chiral conductive polymers as spin filters. Adv. Mater. 27, 1924–1927 (2015). PubMed DOI

Varade, V. et al. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Phys. Chem. Chem. Phys. 20, 1091–1097 (2018). PubMed DOI

Sang, Y. et al. Temperature dependence of charge and spin transfer in azurin. J. Phys. Chem. C 125, 9875–9883 (2021). DOI

Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020). DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Roadmap for Photonics with 2D Materials

. 2025 Aug 20 ; 12 (8) : 3961-4095. [epub] 20250724

A cation-exchange approach to tunable magnetic intercalation superlattices

. 2025 Jul ; 643 (8072) : 683-690. [epub] 20250625

Unconventional superconductivity in chiral molecule-TaS2 hybrid superlattices

. 2024 Aug ; 632 (8023) : 69-74. [epub] 20240626

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...