Chiral molecular intercalation superlattices
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
35768590
DOI
10.1038/s41586-022-04846-3
PII: 10.1038/s41586-022-04846-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The discovery of chiral-induced spin selectivity (CISS) opens up the possibility to manipulate spin orientation without external magnetic fields and enables new spintronic device designs1-4. Although many approaches have been explored for introducing CISS into solid-state materials and devices, the resulting systems so far are often plagued by high inhomogeneity, low spin selectivity or limited stability, and have difficulties in forming robust spintronic devices5-8. Here we report a new class of chiral molecular intercalation superlattices (CMIS) as a robust solid-state chiral material platform for exploring CISS. The CMIS were prepared by intercalating layered two-dimensional atomic crystals (2DACs) (such as TaS2 and TiS2) with selected chiral molecules (such as R-α-methylbenzylamine and S-α-methylbenzylamine). The X-ray diffraction and transmission electron microscopy studies demonstrate highly ordered superlattice structures with alternating crystalline atomic layers and self-assembled chiral molecular layers. Circular dichroism studies show clear chirality-dependent signals between right-handed (R-) and left-handed (S-) CMIS. Furthermore, by using the resulting CMIS as the spin-filtering layer, we create spin-selective tunnelling junctions with a distinct chirality-dependent tunnelling current, achieving a tunnelling magnetoresistance ratio of more than 300 per cent and a spin polarization ratio of more than 60 per cent. With a large family of 2DACs of widely tunable electronic properties and a vast selection of chiral molecules of designable structural motifs, the CMIS define a rich family of artificial chiral materials for investigating the CISS effect and capturing its potential for new spintronic devices.
California NanoSystems Institute University of California Los Angeles Los Angeles CA USA
Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA USA
Department of Materials Science and Engineering University of California Irvine Irvine CA USA
Department of Physics and Astronomy University of California Irvine Irvine CA USA
Irvine Materials Research Institute University of California Irvine Irvine CA USA
Zobrazit více v PubMed
Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999). PubMed DOI
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015). PubMed DOI
Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015). PubMed DOI
Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019). PubMed DOI
Kiran, V. et al. Helicenes—a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016). PubMed DOI
Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). PubMed DOI PMC
Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017). DOI
Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020). PubMed DOI
Gardner, M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds (Penguin Books, 1964).
Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012). PubMed DOI
Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb PubMed DOI
Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021). PubMed DOI
Sung, B., De La Cotte, A. & Grelet, E. Chirality-controlled crystallization via screw dislocations. Nat. Commun. 9, 1405 (2018). PubMed DOI PMC
Ziv, A. et al. AFM-based spin-exchange microscopy using chiral molecules. Adv. Mater. 31, 1904206 (2019). DOI
Chen, Z. et al. Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Res. 15, 2741–2745 (2022). DOI
Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). PubMed DOI
Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020). DOI
Yang, S. H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021). DOI
Geim, A. K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). PubMed DOI PMC
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). PubMed DOI
Huang, L. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018). PubMed DOI
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). PubMed DOI
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021). DOI
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). PubMed DOI
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). PubMed DOI
He, Q. et al. In-situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019). PubMed DOI
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2022). PubMed DOI
Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H-NbSe DOI
Zong, P. A. et al. Flexible foil of hybrid TaS DOI
Nagelberg, A. S. & Worrell, W. L. A thermodynamic study of sodium-intercalated TaS DOI
Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017). PubMed DOI
Schöllhorn, R. & Weiss, A. Cation exchange reactions and layer solvate complexes of ternary phases M DOI
Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS PubMed DOI PMC
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS PubMed DOI
Pan, J. et al. Enhanced superconductivity in restacked TaS PubMed DOI
Wu, J. et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS PubMed DOI
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020). PubMed DOI
Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011). PubMed DOI
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). DOI
Chua, R. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 33, 2103360 (2021). DOI
Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020). PubMed DOI
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). PubMed DOI
Wang, Z. et al. Tunneling spin valves based on Fe PubMed DOI
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). PubMed DOI
Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022). DOI
Du, G. F., Fu, H. H. & Wu, R. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. Phys. Rev. B 102, 35431 (2020). DOI
Fransson, J. Vibrational origin of exchange splitting and chiral-induced spin selectivity. Phys. Rev. B 102, 235416 (2020). DOI
Yildiz, A., Serin, N., Serin, T. & Kasap, M. Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009). DOI
Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975). DOI
Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998). DOI
Luxa, J. et al. 2H→1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem. Eur. J. 23, 8082–8091 (2017). PubMed DOI
Mishra, S. et al. Spin filtering along chiral polymers. Angew. Chem. Int. Ed. 59, 14671–14676 (2020). DOI
Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). PubMed DOI
Ghosh, K. B. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123, 3024–3031 (2019). DOI
Mondal, A. K. et al. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. J. Am. Chem. Soc. 143, 7189–7195 (2021). PubMed DOI PMC
Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018). PubMed DOI
Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015). DOI
Mishra, D. et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl Acad. Sci. USA 110, 14872–14876 (2013). PubMed DOI PMC
Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014). DOI
Mondal, P. C. et al. Chiral conductive polymers as spin filters. Adv. Mater. 27, 1924–1927 (2015). PubMed DOI
Varade, V. et al. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Phys. Chem. Chem. Phys. 20, 1091–1097 (2018). PubMed DOI
Sang, Y. et al. Temperature dependence of charge and spin transfer in azurin. J. Phys. Chem. C 125, 9875–9883 (2021). DOI
Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020). DOI