A cation-exchange approach to tunable magnetic intercalation superlattices
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
40562932
DOI
10.1038/s41586-025-09147-z
PII: 10.1038/s41586-025-09147-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Tailoring magnetic ordering in solid-state materials is essential for emerging spintronics1,2. However, substitutional lattice doping in magnetic semiconductors is often constrained by the low solubility of magnetic elements3-5, limiting the maximum achievable doping concentration (for example, less than 5%) and ferromagnetic ordering temperature6. The intercalation of magnetic elements in layered two-dimensional atomic crystals (2DACs) without breaking in-plane covalent bonds offers an alternative approach to incorporate a much higher concentration of magnetic atoms (for example, up to 50%) beyond the typical solubility limit. However, commonly used chemical and electrochemical intercalation methods are largely confined to a few isolated examples so far. Here we report a general two-step intercalation and cation-exchange strategy to produce a library of highly ordered magnetic intercalation superlattices (MISLs) with tunable magnetic ordering. Monovalent transition-metal cations Cu+ and Ag+, divalent magnetic cations Mn2+, Fe2+, Co2+ and Ni2+, and trivalent rare-earth cations Eu3+ and Gd3+ have been successfully incorporated into group-VIB 2DACs, including MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2, and group-IVB, -VB, -IIIA, -IVA and -VA 2DACs, including TiS2, NbS2, NbSe2, TaS2, In2Se3, SnSe2, Bi2Se3 and Bi2Te3. We show that these MISLs can be prepared with tunable concentrations of magnetic intercalants, enabling tailored magnetic ordering across a diverse array of functional 2DACs, including semiconductors, topological insulators, and superconductors. This work establishes a versatile material platform for both fundamental investigations and spintronics applications.
California NanoSystems Institute University of California Los Angeles Los Angeles CA USA
Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA USA
Department of Chemistry University of Wisconsin Madison Madison WI USA
Department of Materials Science and Engineering University of California Irvine Irvine CA USA
Department of Materials Science and Engineering University of Wisconsin Madison Madison WI USA
Department of Physics and Astronomy University of California Irvine Irvine CA USA
Department of Physics University of Wisconsin Madison Madison WI USA
Irvine Materials Research Institute University of California Irvine Irvine CA USA
See more in PubMed
Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004). PubMed
Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010). PubMed
Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998). PubMed
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Csontos, M. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005). PubMed
Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010). PubMed
Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi
Yi, D. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11, 902 (2020). PubMed PMC
Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020). PubMed
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021). PubMed PMC
Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024). PubMed
Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017). PubMed
Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022). PubMed
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). PubMed
Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).
Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). PubMed
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). PubMed
Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).
Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi PubMed
Gong, Y. et al. Spatially controlled doping of two-dimensional SnS PubMed
Ren, H. et al. Precision control of amphoteric doping in Cu PubMed PMC
Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).
Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). PubMed
He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019). PubMed
Wang, G. et al. Revisiting the structural evolution of MoS
Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS PubMed
Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS PubMed
Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS
Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS
Li, H. et al. From bulk to monolayer MoS
Zhu, L. et al. Investigation of CoS
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS PubMed
Flory, M. A., McLamarrah, S. K. & Ziurys, L. M. High-resolution spectroscopy of CoS (X PubMed
Yu, Z. X. et al. The structure of the CoS
Luo, Y. et al. Two-dimensional MoS PubMed
Schlapp, R. & Penney, W. G. Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).
Greaney, M., Huan, G., Ramanujachary, K. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo
Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).
Deng, W. et al. Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation. Commun. Mater. 5, 215 (2024).
Ko, K. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe PubMed
Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).
Priour, D. J. & Das Sarma, S. Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006). PubMed
Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020). PubMed PMC
Mugiraneza, S. & Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022).
Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022). PubMed
Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn PubMed
Shermadini, Z. et al. Coexistence of magnetism and superconductivity in the iron-based compound Cs PubMed
Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS
Zhou, J., Zhou. J. & Duan, X. Replication data for: A cation-exchange approach to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).