• This record comes from PubMed

A cation-exchange approach to tunable magnetic intercalation superlattices

. 2025 Jul ; 643 (8072) : 683-690. [epub] 20250625

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Links

PubMed 40562932
DOI 10.1038/s41586-025-09147-z
PII: 10.1038/s41586-025-09147-z
Knihovny.cz E-resources

Tailoring magnetic ordering in solid-state materials is essential for emerging spintronics1,2. However, substitutional lattice doping in magnetic semiconductors is often constrained by the low solubility of magnetic elements3-5, limiting the maximum achievable doping concentration (for example, less than 5%) and ferromagnetic ordering temperature6. The intercalation of magnetic elements in layered two-dimensional atomic crystals (2DACs) without breaking in-plane covalent bonds offers an alternative approach to incorporate a much higher concentration of magnetic atoms (for example, up to 50%) beyond the typical solubility limit. However, commonly used chemical and electrochemical intercalation methods are largely confined to a few isolated examples so far. Here we report a general two-step intercalation and cation-exchange strategy to produce a library of highly ordered magnetic intercalation superlattices (MISLs) with tunable magnetic ordering. Monovalent transition-metal cations Cu+ and Ag+, divalent magnetic cations Mn2+, Fe2+, Co2+ and Ni2+, and trivalent rare-earth cations Eu3+ and Gd3+ have been successfully incorporated into group-VIB 2DACs, including MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2, and group-IVB, -VB, -IIIA, -IVA and -VA 2DACs, including TiS2, NbS2, NbSe2, TaS2, In2Se3, SnSe2, Bi2Se3 and Bi2Te3. We show that these MISLs can be prepared with tunable concentrations of magnetic intercalants, enabling tailored magnetic ordering across a diverse array of functional 2DACs, including semiconductors, topological insulators, and superconductors. This work establishes a versatile material platform for both fundamental investigations and spintronics applications.

See more in PubMed

Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004). PubMed

Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010). PubMed

Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998). PubMed

Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

Csontos, M. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005). PubMed

Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010). PubMed

Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi

Yi, D. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11, 902 (2020). PubMed PMC

Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020). PubMed

Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021). PubMed PMC

Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024). PubMed

Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017). PubMed

Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022). PubMed

Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). PubMed

Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).

Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). PubMed

Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). PubMed

Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi PubMed

Gong, Y. et al. Spatially controlled doping of two-dimensional SnS PubMed

Ren, H. et al. Precision control of amphoteric doping in Cu PubMed PMC

Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). PubMed

He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019). PubMed

Wang, G. et al. Revisiting the structural evolution of MoS

Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS PubMed

Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS PubMed

Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS

Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS

Li, H. et al. From bulk to monolayer MoS

Zhu, L. et al. Investigation of CoS

Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS PubMed

Flory, M. A., McLamarrah, S. K. & Ziurys, L. M. High-resolution spectroscopy of CoS (X PubMed

Yu, Z. X. et al. The structure of the CoS

Luo, Y. et al. Two-dimensional MoS PubMed

Schlapp, R. & Penney, W. G. Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).

Greaney, M., Huan, G., Ramanujachary, K. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo

Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).

Deng, W. et al. Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation. Commun. Mater. 5, 215 (2024).

Ko, K. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe PubMed

Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

Priour, D. J. & Das Sarma, S. Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006). PubMed

Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020). PubMed PMC

Mugiraneza, S. & Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022).

Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022). PubMed

Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn PubMed

Shermadini, Z. et al. Coexistence of magnetism and superconductivity in the iron-based compound Cs PubMed

Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS

Zhou, J., Zhou. J. & Duan, X. Replication data for: A cation-exchange approach to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...