Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28441342
PubMed Central
PMC5454817
DOI
10.3390/ijms18050904
PII: ijms18050904
Knihovny.cz E-zdroje
- Klíčová slova
- humans, mice, oestrogen receptors, oestrogen-like compounds, oestrogens, pigs, rats, signalling, sperm, testes,
- MeSH
- aromatasa nedostatek genetika MeSH
- estrogeny farmakologie MeSH
- lidé MeSH
- receptory pro estrogeny metabolismus MeSH
- signální transdukce MeSH
- spermatogeneze účinky léků MeSH
- testis účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aromatasa MeSH
- estrogeny MeSH
- receptory pro estrogeny MeSH
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors' variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens' and oestrogen receptors' effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Zobrazit více v PubMed
Hess R.A. Estrogen in the adult male reproductive tract: A review. Reprod. Biol. Endocrinol. 2003;1:52. doi: 10.1186/1477-7827-1-52. PubMed DOI PMC
Free M.J., Jaffe R.A. Collection of rete testis fluid from rats without previous efferent duct ligation. Biol. Reprod. 1979;20:269–278. doi: 10.1095/biolreprod20.2.269. PubMed DOI
Hess R.A., Bunick D., Bahr J.M. Sperm, a source of estrogen. Environ. Heal. Perspect. 1995;103:59–62. doi: 10.1289/ehp.95103s759. PubMed DOI PMC
Faccio L., Da Silva A.S., Tonin A.A., Franca R.T., Gressler L.T., Copetti M.M., Oliveira C.B., Sangoi M.B., Moresco R.N., Bottari N.B., et al. Serum levels of LH, FSH, estradiol and progesterone in female rats experimentally infected by trypanosoma evansi. Exp. Parasitol. 2013;135:110–115. doi: 10.1016/j.exppara.2013.06.008. PubMed DOI
Kelch R.P., Jenner M.R., Weinstein R., Kaplan S.L., Grumbach M.M. Estradiol and testosterone secretion by human, simian, and canine testes, in males with hypogonadism and in male pseudohermaphrodites with the feminizing testes syndrome. J. Clin. Investig. 1972;51:824–830. doi: 10.1172/JCI106877. PubMed DOI PMC
Abraham G.E., Odell W.D., Swerdloff R.S., Hopper K. Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17-hydroxyprogesterone, and estradiol-17 β during the menstrual cycle. J. Clin. Endocrinol. Metab. 1972;34:312–318. doi: 10.1210/jcem-34-2-312. PubMed DOI
Lubahn D.B., Moyer J.S., Golding T.S., Couse J.F., Korach K.S., Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA. 1993;90:11162–11166. doi: 10.1073/pnas.90.23.11162. PubMed DOI PMC
Cooper T.G., Noonan E., von Eckardstein S., Auger J., Baker H.W., Behre H.M., Haugen T.B., Kruger T., Wang C., Mbizvo M.T., et al. World health organization reference values for human semen characteristics. Hum. Reprod. Update. 2010;16:231–245. doi: 10.1093/humupd/dmp048. PubMed DOI
Pflieger-Bruss S., Schuppe H.C., Schill W.B. The male reproductive system and its susceptibility to endocrine disrupting chemicals. Andrologia. 2004;36:337–345. doi: 10.1111/j.1439-0272.2004.00641.x. PubMed DOI
Schagdarsurengin U., Western P., Steger K., Meinhardt A. Developmental origins of male subfertility: Role of infection, inflammation, and environmental factors. Semin. Immunopathol. 2016;38:765–781. doi: 10.1007/s00281-016-0576-y. PubMed DOI
Contractor R.G., Foran C.M., Li S., Willett K.L. Evidence of gender-and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J. Toxicol. Environ. Health. Part A. 2004;67:1–22. doi: 10.1080/15287390490253633. PubMed DOI
Mirbahai L., Chipman J.K. Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014;764–765:10–17. doi: 10.1016/j.mrgentox.2013.10.003. PubMed DOI
Schagdarsurengin U., Steger K. Epigenetics in male reproduction: Effect of paternal diet on sperm quality and offspring health. Nat. Rev. Urol. 2016;13:584–595. doi: 10.1038/nrurol.2016.157. PubMed DOI
Aschim E.L., Saether T., Wiger R., Grotmol T., Haugen T.B. Differential distribution of splice variants of estrogen receptor β in human testicular cells suggests specific functions in spermatogenesis. J. Steroid Biochem. Mol. Biol. 2004;92:97–106. doi: 10.1016/j.jsbmb.2004.05.008. PubMed DOI
Flouriot G., Brand H., Denger S., Metivier R., Kos M., Reid G., Sonntag-Buck V., Gannon F. Identification of a new isoform of the human estrogen receptor-α (HER-α) that is encoded by distinct transcripts and that is able to repress HER-α activation function 1. EMBO J. 2000;19:4688–4700. doi: 10.1093/emboj/19.17.4688. PubMed DOI PMC
Friend K.E., Resnick E.M., Ang L.W., Shupnik M.A. Specific modulation of estrogen receptor mRNA isoforms in rat pituitary throughout the estrous cycle and in response to steroid hormones. Mol. Cell. Endocrinol. 1997;131:147–155. doi: 10.1016/S0303-7207(97)00098-1. PubMed DOI
Fuqua S.A., Fitzgerald S.D., Chamness G.C., Tandon A.K., McDonnell D.P., Nawaz Z., O’Malley B.W., McGuire W.L. Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res. 1991;51:105–109. PubMed
Hanstein B., Liu H., Yancisin M.C., Brown M. Functional analysis of a novel estrogen receptor-β isoform. Mol. Endocrinol. 1999;13:129–137. PubMed
Inoue S., Ogawa S., Horie K., Hoshino S., Goto W., Hosoi T., Tsutsumi O., Muramatsu M., Ouchi Y. An estrogen receptor β isoform that lacks exon 5 has dominant negative activity on both ERα and ERβ. Biochem. Biophys. Res. Commun. 2000;279:814–819. doi: 10.1006/bbrc.2000.4010. PubMed DOI
Lambard S., Galeraud-Denis I., Saunders P.T., Carreau S. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J. Mol. Endocrinol. 2004;32:279–289. doi: 10.1677/jme.0.0320279. PubMed DOI
Lewandowski S., Kalita K., Kaczmarek L. Estrogen receptor β. Potential functional significance of a variety of mRNA isoforms. FEBS Lett. 2002;524:1–5. doi: 10.1016/S0014-5793(02)03015-6. PubMed DOI
Lu B., Leygue E., Dotzlaw H., Murphy L.J., Murphy L.C. Functional characteristics of a novel murine estrogen receptor-β isoform, estrogen receptor-β 2. J. Mol. Endocrinol. 2000;25:229–242. doi: 10.1677/jme.0.0250229. PubMed DOI
Lu B., Leygue E., Dotzlaw H., Murphy L.J., Murphy L.C., Watson P.H. Estrogen receptor-β mRNA variants in human and murine tissues. Mol. Cell. Endocrinol. 1998;138:199–203. doi: 10.1016/S0303-7207(98)00050-1. PubMed DOI
Ogawa S., Inoue S., Watanabe T., Orimo A., Hosoi T., Ouchi Y., Muramatsu M. Molecular cloning and characterization of human estrogen receptor βCX: A potential inhibitor ofestrogen action in human. Nucleic Acids Res. 1998;26:3505–3512. doi: 10.1093/nar/26.15.3505. PubMed DOI PMC
Peng B., Lu B., Leygue E., Murphy L.C. Putative functional characteristics of human estrogen receptor-β isoforms. J. Mol. Endocrinol. 2003;30:13–29. doi: 10.1677/jme.0.0300013. PubMed DOI
Petersen D.N., Tkalcevic G.T., Koza-Taylor P.H., Turi T.G., Brown T.A. Identification of estrogen receptor β2, a functional variant of estrogen receptor β expressed in normal rat tissues. Endocrinology. 1998;139:1082–1092. doi: 10.1210/endo.139.3.5840. PubMed DOI
Price R.H., Jr., Lorenzon N., Handa R.J. Differential expression of estrogen receptor β splice variants in rat brain: Identification and characterization of a novel variant missing exon 4. Brain Res. Mol. Brain Res. 2000;80:260–268. doi: 10.1016/S0169-328X(00)00135-2. PubMed DOI
Wang Z., Zhang X., Shen P., Loggie B.W., Chang Y., Deuel T.F. A variant of estrogen receptor-α, HER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc. Natl. Acad. Sci. USA. 2006;103:9063–9068. doi: 10.1073/pnas.0603339103. PubMed DOI PMC
Barone I., Brusco L., Fuqua S.A. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin. Cancer Res. 2010;16:2702–2708. doi: 10.1158/1078-0432.CCR-09-1753. PubMed DOI PMC
Hirata S., Shoda T., Kato J., Hoshi K. Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends. Endocrinol. Metab. 2003;14:124–129. doi: 10.1016/S1043-2760(03)00028-6. PubMed DOI
Luconi M., Forti G., Baldi E. Genomic and nongenomic effects of estrogens: Molecular mechanisms of action and clinical implications for male reproduction. J. Steroid Biochem. Mol. Biol. 2002;80:369–381. doi: 10.1016/S0960-0760(02)00041-9. PubMed DOI
Nilsson S., Makela S., Treuter E., Tujague M., Thomsen J., Andersson G., Enmark E., Pettersson K., Warner M., Gustafsson J.A. Mechanisms of estrogen action. Physiol. Rev. 2001;81:1535–1565. PubMed
Paterni I., Granchi C., Katzenellenbogen J.A., Minutolo F. Estrogen receptors α (ERα) and β (ERβ): Subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29. doi: 10.1016/j.steroids.2014.06.012. PubMed DOI PMC
Filardo E., Quinn J., Pang Y., Graeber C., Shaw S., Dong J., Thomas P. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology. 2007;148:3236–3245. doi: 10.1210/en.2006-1605. PubMed DOI
Funakoshi T., Yanai A., Shinoda K., Kawano M.M., Mizukami Y. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem. Biophys. Res. Commun. 2006;346:904–910. doi: 10.1016/j.bbrc.2006.05.191. PubMed DOI
Revankar C.M., Cimino D.F., Sklar L.A., Arterburn J.B., Prossnitz E.R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307:1625–1630. doi: 10.1126/science.1106943. PubMed DOI
Sakamoto H., Matsuda K., Hosokawa K., Nishi M., Morris J.F., Prossnitz E.R., Kawata M. Expression of G protein-coupled receptor-30, a g protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology. 2007;148:5842–5850. doi: 10.1210/en.2007-0436. PubMed DOI
Filardo E.J., Graeber C.T., Quinn J.A., Resnick M.B., Giri D., DeLellis R.A., Steinhoff M.M., Sabo E. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin. Cancer Res. 2006;12:6359–6366. doi: 10.1158/1078-0432.CCR-06-0860. PubMed DOI
Hazell G.G., Yao S.T., Roper J.A., Prossnitz E.R., O’Carroll A.M., Lolait S.J. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J. Endocrinol. 2009;202:223–236. doi: 10.1677/JOE-09-0066. PubMed DOI PMC
Plante B.J., Lessey B.A., Taylor R.N., Wang W., Bagchi M.K., Yuan L., Scotchie J., Fritz M.A., Young S.L. G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium. Reprod. Sci. 2012;19:684–693. doi: 10.1177/1933719111431000. PubMed DOI PMC
Wang C., Prossnitz E.R., Roy S.K. Expression of g protein-coupled receptor 30 in the hamster ovary: Differential regulation by gonadotropins and steroid hormones. Endocrinology. 2007;148:4853–4864. doi: 10.1210/en.2007-0727. PubMed DOI
Fietz D., Ratzenbock C., Hartmann K., Raabe O., Kliesch S., Weidner W., Klug J., Bergmann M. Expression pattern of estrogen receptors α and β and g-protein-coupled estrogen receptor 1 in the human testis. Histochem. Cell Biol. 2014;142:421–432. doi: 10.1007/s00418-014-1216-z. PubMed DOI
Oliveira P.F., Alves M.G., Martins A.D., Correia S., Bernardino R.L., Silva J., Barros A., Sousa M., Cavaco J.E., Socorro S. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells. Gen. Comp. Endocrinol. 2014;201:16–20. doi: 10.1016/j.ygcen.2014.02.022. PubMed DOI
Rago V., Romeo F., Giordano F., Maggiolini M., Carpino A. Identification of the estrogen receptor GPER in neoplastic and non-neoplastic human testes. Reprod. Biol. Endocrinol. 2011;9:135. doi: 10.1186/1477-7827-9-135. PubMed DOI PMC
Hewitt S.C., Deroo B.J., Korach K.S. Signal transduction. A new mediator for an old hormone? Science. 2005;307:1572–1573. doi: 10.1126/science.1110345. PubMed DOI
Sirianni R., Chimento A., Ruggiero C., De Luca A., Lappano R., Ando S., Maggiolini M., Pezzi V. The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17β-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology. 2008;149:5043–5051. doi: 10.1210/en.2007-1593. PubMed DOI
Prossnitz E.R., Arterburn J.B., Smith H.O., Oprea T.I., Sklar L.A., Hathaway H.J. Estrogen signaling through the transmembrane g protein-coupled receptor GPR30. Annu. Rev. Physiol. 2008;70:165–190. doi: 10.1146/annurev.physiol.70.113006.100518. PubMed DOI
Toran-Allerand C.D., Guan X., MacLusky N.J., Horvath T.L., Diano S., Singh M., Connolly E.S.J., Nethrapalli I.S., Tinnikov A.A. Er-x: A novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J. Neurosci. 2002;22:8391–8401. PubMed PMC
Kampa M., Notas G., Pelekanou V., Troullinaki M., Andrianaki M., Azariadis K., Kampouri E., Lavrentaki K., Castanas E. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERX) Steroids. 2012;77:959–967. doi: 10.1016/j.steroids.2012.02.011. PubMed DOI
Qiu J., Bosch M.A., Tobias S.C., Grandy D.K., Scanlan T.S., Ronnekleiv O.K., Kelly M.J. Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase c. J. Neurosci. 2003;23:9529–9540. PubMed PMC
Micevych P.E., Dewing P. Membrane-initiated estradiol signaling regulating sexual receptivity. Front. Endocrinol. 2011;2:26. doi: 10.3389/fendo.2011.00026. PubMed DOI PMC
Banerjee S., Chambliss K.L., Mineo C., Shaul P.W. Recent insights into non-nuclear actions of estrogen receptor α. Steroids. 2014;81:64–69. doi: 10.1016/j.steroids.2013.11.002. PubMed DOI
Marino M., Galluzzo P., Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genom. 2006;7:497–508. doi: 10.2174/138920206779315737. PubMed DOI PMC
Lucas T.F., Siu E.R., Esteves C.A., Monteiro H.P., Oliveira C.A., Porto C.S., Lazari M.F. 17β-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat sertoli cells. Biol. Reprod. 2008;78:101–114. doi: 10.1095/biolreprod.107.063909. PubMed DOI
Cowley S.M., Hoare S., Mosselman S., Parker M.G. Estrogen receptors α and β form heterodimers on DNA. J. Biol. Chem. 1997;272:19858–19862. doi: 10.1074/jbc.272.32.19858. PubMed DOI
Hammes S.R., Levin E.R. Extranuclear steroid receptors: Nature and actions. Endocr. Rev. 2007;28:726–741. doi: 10.1210/er.2007-0022. PubMed DOI
Ho K.J., Liao J.K. Nonnuclear actions of estrogen. Arterioscler. Thromb. Vasc. Biol. 2002;22:1952–1961. doi: 10.1161/01.ATV.0000041200.85946.4A. PubMed DOI
Kelly M.J., Levin E.R. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 2001;12:152–156. doi: 10.1016/S1043-2760(01)00377-0. PubMed DOI
Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., Trentalance A., Visca P., Marino M. Palmitoylation-dependent estrogen receptor α membrane localization: Regulation by 17β-estradiol. Mol. Biol. Cell. 2005;16:231–237. doi: 10.1091/mbc.E04-07-0547. PubMed DOI PMC
Li L., Haynes M.P., Bender J.R. Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells. Proc. Natl. Acad. Sci. USA. 2003;100:4807–4812. doi: 10.1073/pnas.0831079100. PubMed DOI PMC
Marquez D.C., Chen H.W., Curran E.M., Welshons W.V., Pietras R.J. Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol. Cell. Endocrinol. 2006;246:91–100. doi: 10.1016/j.mce.2005.11.020. PubMed DOI
Norfleet A.M., Thomas M.L., Gametchu B., Watson C.S. Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry. Endocrinology. 1999;140:3805–3814. PubMed
Pappas T.C., Gametchu B., Watson C.S. Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J. 1995;9:404–410. PubMed
Pedram A., Razandi M., Levin E.R. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 2006;20:1996–2009. doi: 10.1210/me.2005-0525. PubMed DOI
Razandi M., Alton G., Pedram A., Ghonshani S., Webb P., Levin E.R. Identification of a structural determinant necessary for the localization and function of estrogen receptor α at the plasma membrane. Mol. Cell. Biol. 2003;23:1633–1646. doi: 10.1128/MCB.23.5.1633-1646.2003. PubMed DOI PMC
Razandi M., Pedram A., Greene G.L., Levin E.R. Cell membrane and nuclear estrogen receptors (ERS) originate from a single transcript: Studies of ERα and ERβ expressed in chinese hamster ovary cells. Mol. Endocrinol. 1999;13:307–319. doi: 10.1210/mend.13.2.0239. PubMed DOI
Razandi M., Pedram A., Merchenthaler I., Greene G.L., Levin E.R. Plasma membrane estrogen receptors exist and functions as dimers. Mol. Endocrinol. 2004;18:2854–2865. doi: 10.1210/me.2004-0115. PubMed DOI
Pedram A., Razandi M., Sainson R.C., Kim J.K., Hughes C.C., Levin E.R. A conserved mechanism for steroid receptor translocation to the plasma membrane. J. Biol. Chem. 2007;282:22278–22288. doi: 10.1074/jbc.M611877200. PubMed DOI
Acconcia F., Ascenzi P., Fabozzi G., Visca P., Marino M. S-palmitoylation modulates human estrogen receptor-α functions. Biochem. Biophys. Res. Commun. 2004;316:878–883. doi: 10.1016/j.bbrc.2004.02.129. PubMed DOI
Galluzzo P., Caiazza F., Moreno S., Marino M. Role of ERβ palmitoylation in the inhibition of human colon cancer cell proliferation. Endocr. Cancer. 2007;14:153–167. doi: 10.1677/ERC-06-0020. PubMed DOI
Wang Z., Zhang X., Shen P., Loggie B.W., Chang Y., Deuel T.F. Identification, cloning, and expression of human estrogen receptor-α36, a novel variant of human estrogen receptor-α66. Biochem. Biophys. Res. Commun. 2005;336:1023–1027. doi: 10.1016/j.bbrc.2005.08.226. PubMed DOI
Wang C., Liu Y., Cao J.M. G protein-coupled receptors: Extranuclear mediators for the non-genomic actions of steroids. Int. J. Mol. Sci. 2014;15:15412–15425. doi: 10.3390/ijms150915412. PubMed DOI PMC
Cavaco J.E., Laurentino S.S., Barros A., Sousa M., Socorro S. Estrogen receptors α and β in human testis: Both isoforms are expressed. Syst. Biol. Reprod. Med. 2009;55:137–144. doi: 10.3109/19396360902855733. PubMed DOI
Enmark E., Pelto-Huikko M., Grandien K., Lagercrantz S., Lagercrantz J., Fried G., Nordenskjold M., Gustafsson J.A. Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J.Clin. Endocrinol. Metab. 1997;82:4258–4265. doi: 10.1210/jc.82.12.4258. PubMed DOI
Fisher J.S., Millar M.R., Majdic G., Saunders P.T., Fraser H.M., Sharpe R.M. Immunolocalisation of oestrogen receptor-α within the testis and excurrent ducts of the rat and marmoset monkey from perinatal life to adulthood. J. Endocrinol. 1997;153:485–495. doi: 10.1677/joe.0.1530485. PubMed DOI
Gunawan A., Cinar M.U., Uddin M.J., Kaewmala K., Tesfaye D., Phatsara C., Tholen E., Looft C., Schellander K. Investigation on association and expression of ESR2 as a candidate gene for boar sperm quality and fertility. Reprod. Domest. Anim. 2012;47:782–790. doi: 10.1111/j.1439-0531.2011.01968.x. PubMed DOI
Gunawan A., Kaewmala K., Uddin M.J., Cinar M.U., Tesfaye D., Phatsara C., Tholen E., Looft C., Schellander K. Association study and expression analysis of porcine ESR1 as a candidate gene for boar fertility and sperm quality. Anim. Reprod. Sci. 2011;128:11–21. doi: 10.1016/j.anireprosci.2011.08.008. PubMed DOI
Han Y., Feng H.L., Sandlow J.I., Haines C.J. Comparing expression of progesterone and estrogen receptors in testicular tissue from men with obstructive and nonobstructive azoospermia. J. Androl. 2009;30:127–133. doi: 10.2164/jandrol.108.005157. PubMed DOI
Lekhkota O., Brehm R., Claus R., Wagner A., Bohle R.M., Bergmann M. Cellular localization of estrogen receptor-α (ERα) and -β (ERβ) mRNA in the boar testis. Histochem. Cell Biol. 2006;125:259–264. doi: 10.1007/s00418-005-0008-x. PubMed DOI
Makinen S., Makela S., Weihua Z., Warner M., Rosenlund B., Salmi S., Hovatta O., Gustafsson J.A. Localization of oestrogen receptors α and β in human testis. Mol. Hum. Reprod. 2001;7:497–503. doi: 10.1093/molehr/7.6.497. PubMed DOI
Mutembei H.M., Pesch S., Schuler G., Hoffmann B. Expression of oestrogen receptors α and β and of aromatase in the testis of immature and mature boars. Reprod. Domest. Anim. 2005;40:228–236. doi: 10.1111/j.1439-0531.2005.00586.x. PubMed DOI
Otto C., Fuchs I., Kauselmann G., Kern H., Zevnik B., Andreasen P., Schwarz G., Altmann H., Klewer M., Schoor M., et al. Gpr30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod. 2009;80:34–41. doi: 10.1095/biolreprod.108.071175. PubMed DOI
Pelletier G., El-Alfy M. Immunocytochemical localization of estrogen receptors α and β in the human reproductive organs. J. Clin. Endocrinol. Metab. 2000;85:4835–4840. PubMed
Pelletier G., Labrie C., Labrie F. Localization of oestrogen receptor α, oestrogen receptor β and androgen receptors in the rat reproductive organs. J. Endocrinol. 2000;165:359–370. doi: 10.1677/joe.0.1650359. PubMed DOI
Pentikainen V., Erkkila K., Suomalainen L., Parvinen M., Dunkel L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J. Clin. Endocrinol. Metab. 2000;85:2057–2067. doi: 10.1210/jc.85.5.2057. PubMed DOI
Saunders P.T., Fisher J.S., Sharpe R.M., Millar M.R. Expression of oestrogen receptor β (ERβ) occurs in multiple cell types, including some germ cells, in the rat testis. J. Endocrinol. 1998;156:R13–R17. doi: 10.1677/joe.0.156R013. PubMed DOI
Saunders P.T., Millar M.R., Macpherson S., Irvine D.S., Groome N.P., Evans L.R., Sharpe R.M., Scobie G.A. ERβ1 and the ERβ2 splice variant (ERβcx/β2) are expressed in distinct cell populations in the adult human testis. J. Clin. Endocrinol. Metab. 2002;87:2706–2715. doi: 10.1210/jcem.87.6.8619. PubMed DOI
Saunders P.T., Sharpe R.M., Williams K., Macpherson S., Urquart H., Irvine D.S., Millar M.R. Differential expression of oestrogen receptor α and β proteins in the testes and male reproductive system of human and non-human primates. Mol. Hum. Reprod. 2001;7:227–236. doi: 10.1093/molehr/7.3.227. PubMed DOI
Van Pelt A.M., de Rooij D.G., van der Burg B., van der Saag P.T., Gustafsson J.A., Kuiper G.G. Ontogeny of estrogen receptor-β expression in rat testis. Endocrinology. 1999;140:478–483. doi: 10.1210/en.140.1.478. PubMed DOI
Zhou Q., Nie R., Prins G.S., Saunders P.T., Katzenellenbogen B.S., Hess R.A. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J. Androl. 2002;23:870–881. PubMed
Snyder M.A., Smejkalova T., Forlano P.M., Woolley C.S. Multiple ERβ antisera label in ERβ knockout and null mouse tissues. J. Neurosci. Methods. 2010;188:226–234. doi: 10.1016/j.jneumeth.2010.02.012. PubMed DOI PMC
Bois C., Delalande C., Nurmio M., Parvinen M., Zanatta L., Toppari J., Carreau S. Age- and cell-related gene expression of aromatase and estrogen receptors in the rat testis. J. Mol. Endocrinol. 2010;45:147–159. doi: 10.1677/JME-10-0041. PubMed DOI
Lucas T.F., Lazari M.F., Porto C.S. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of sertoli cells from 15-day-old rats. Mol. Cell. Endocrinol. 2014;382:84–96. doi: 10.1016/j.mce.2013.09.015. PubMed DOI
Chimento A., Sirianni R., Delalande C., Silandre D., Bois C., Ando S., Maggiolini M., Carreau S., Pezzi V. 17 β-estradiol activates rapid signaling pathways involved in rat pachytene spermatocytes apoptosis through GPR30 and ERα. Mol. Cell. Endocrinol. 2010;320:136–144. doi: 10.1016/j.mce.2010.01.035. PubMed DOI
Chimento A., Sirianni R., Zolea F., Bois C., Delalande C., Ando S., Maggiolini M., Aquila S., Carreau S., Pezzi V. Gper and ESRS are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax. Int. J. Androl. 2011;34:420–429. doi: 10.1111/j.1365-2605.2010.01100.x. PubMed DOI
Lucas T.F., Pimenta M.T., Pisolato R., Lazari M.F., Porto C.S. 17β-estradiol signaling and regulation of sertoli cell function. Spermatogenesis. 2011;1:318–324. doi: 10.4161/spmg.1.4.18903. PubMed DOI PMC
Chimento A., Sirianni R., Casaburi I., Ruggiero C., Maggiolini M., Ando S., Pezzi V. 17β-estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line. Mol. Cell. Endocrinol. 2012;355:49–59. doi: 10.1016/j.mce.2012.01.017. PubMed DOI
Lucas T.F., Royer C., Siu E.R., Lazari M.F., Porto C.S. Expression and signaling of G protein-coupled estrogen receptor 1 (GPER) in rat sertoli cells. Biol. Reprod. 2010;83:307–317. doi: 10.1095/biolreprod.110.084160. PubMed DOI
Royer C., Lucas T.F., Lazari M.F., Porto C.S. 17β-estradiol signaling and regulation of proliferation and apoptosis of rat sertoli cells. Biol. Reprod. 2012;86:108. doi: 10.1095/biolreprod.111.096891. PubMed DOI
Prossnitz E.R., Hathaway H.J. What have we learned about gper function in physiology and disease from knockout mice? J. Steroid Biochem. Mol. Biol. 2015;153:114–126. doi: 10.1016/j.jsbmb.2015.06.014. PubMed DOI PMC
Kumar A., Dumasia K., Deshpande S., Balasinor N.H. Direct regulation of genes involved in sperm release by estrogen and androgen through their receptors and coregulators. J. Steroid Biochem. Mol. Biol. 2017 doi: 10.1016/j.jsbmb.2017.02.017. PubMed DOI
Kumar A., Dumasia K., Gaonkar R., Sonawane S., Kadam L., Balasinor N.H. Estrogen and androgen regulate actin-remodeling and endocytosis-related genes during rat spermiation. Mol. Cell. Endocrinol. 2015;404:91–101. doi: 10.1016/j.mce.2014.12.029. PubMed DOI
Xu J., Qiu Y., DeMayo F.J., Tsai S.Y., Tsai M.J., O’Malley B.W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998;279:1922–1925. doi: 10.1126/science.279.5358.1922. PubMed DOI
Gehin M., Mark M., Dennefeld C., Dierich A., Gronemeyer H., Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and P/CIP. Mol. Cell. Biol. 2002;22:5923–5937. doi: 10.1128/MCB.22.16.5923-5937.2002. PubMed DOI PMC
Robyr D., Wolffe A.P., Wahli W. Nuclear hormone receptor coregulators in action: Diversity for shared tasks. Mol. Endocrinol. 2000;14:329–347. doi: 10.1210/mend.14.3.0411. PubMed DOI
Cravatt B.F., Demarest K., Patricelli M.P., Bracey M.H., Giang D.K., Martin B.R., Lichtman A.H. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA. 2001;98:9371–9376. doi: 10.1073/pnas.161191698. PubMed DOI PMC
Grimaldi P., Orlando P., Di Siena S., Lolicato F., Petrosino S., Bisogno T., Geremia R., De Petrocellis L., Di Marzo V. The endocannabinoid system and pivotal role of the CB2 receptor in mouse spermatogenesis. Proc. Natl. Acad. Sci. USA. 2009;106:11131–11136. doi: 10.1073/pnas.0812789106. PubMed DOI PMC
Maccarrone M., Barboni B., Paradisi A., Bernabo N., Gasperi V., Pistilli M.G., Fezza F., Lucidi P., Mattioli M. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J. Cell Sci. 2005;118:4393–4404. doi: 10.1242/jcs.02536. PubMed DOI
Rossato M., Ion Popa F., Ferigo M., Clari G., Foresta C. Human sperm express cannabinoid receptor CB1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J. Clin. Endocrinol. Metab. 2005;90:984–991. doi: 10.1210/jc.2004-1287. PubMed DOI
Rossi G., Gasperi V., Paro R., Barsacchi D., Cecconi S., Maccarrone M. Follicle-stimulating hormone activates fatty acid amide hydrolase by protein kinase a and aromatase-dependent pathways in mouse primary sertoli cells. Endocrinology. 2007;148:1431–1439. doi: 10.1210/en.2006-0969. PubMed DOI
Grimaldi P., Pucci M., Di Siena S., Di Giacomo D., Pirazzi V., Geremia R., Maccarrone M. The faah gene is the first direct target of estrogen in the testis: Role of histone demethylase LSD1. Cell. Mol. Life Sci. 2012;69:4177–4190. doi: 10.1007/s00018-012-1074-6. PubMed DOI PMC
Hernandez-Perez O., Ballesteros L.M., Rosado A. Binding of 17β-estradiol to the outer surface and nucleus of human spermatozoa. Arch. Androl. 1979;3:23–29. doi: 10.3109/01485017908985044. PubMed DOI
Cheng C.Y., Boettcher B., Rose R.J., Kay D.J., Tinneberg H.R. The binding of sex steroids to human spermatozoa. An autoradiographic study. Int. J. Androl. 1981;4:1–17. doi: 10.1111/j.1365-2605.1981.tb00685.x. PubMed DOI
Cheng C.Y., Boettcher B., Rose R.J. Lack of cytosol and nuclear estrogen receptors in human spermatozoa. Biochem. Biophys. Res. Commun. 1981;100:840–846. doi: 10.1016/S0006-291X(81)80250-1. PubMed DOI
Durkee T.J., Mueller M., Zinaman M. Identification of estrogen receptor protein and messenger ribonucleic acid in human spermatozoa. Am. J. Obstet. Gynecol. 1998;178:1288–1297. doi: 10.1016/S0002-9378(98)70335-7. PubMed DOI
Rago V., Siciliano L., Aquila S., Carpino A. Detection of estrogen receptors ER-α and ER-β in human ejaculated immature spermatozoa with excess residual cytoplasm. Reprod. Biol. Endocrinol. 2006;4:36. doi: 10.1186/1477-7827-4-36. PubMed DOI PMC
Solakidi S., Psarra A.M., Nikolaropoulos S., Sekeris C.E. Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: Localization of ERβ and ar in mitochondria of the midpiece. Hum. Reprod. 2005;20:3481–3487. doi: 10.1093/humrep/dei267. PubMed DOI
Denger S., Reid G., Kos M., Flouriot G., Parsch D., Brand H., Korach K.S., Sonntag-Buck V., Gannon F. ERα gene expression in human primary osteoblasts: Evidence for the expression of two receptor proteins. Mol. Endocrinol. 2001;15:2064–2077. doi: 10.1210/mend.15.12.0741. PubMed DOI
Aquila S., Sisci D., Gentile M., Middea E., Catalano S., Carpino A., Rago V., Ando S. Estrogen receptor ERα and ERβ are both expressed in human ejaculated spermatozoa: Evidence of their direct interaction with phosphatidylinositol-3-OH kinase/AKT pathway. J. Clin. Endocrinol. Metab. 2004;89:1443–1451. doi: 10.1210/jc.2003-031681. PubMed DOI
Rago V., Aquila S., Panza R., Carpino A. Cytochrome p450arom, androgen and estrogen receptors in pig sperm. Reprod. Biol. Endocrinol. 2007;5:23. doi: 10.1186/1477-7827-5-23. PubMed DOI PMC
Sebkova N., Cerna M., Ded L., Peknicova J., Dvorakova-Hortova K. The slower the better: How sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction. 2012;143:297–307. doi: 10.1530/REP-11-0326. PubMed DOI
Luconi M., Muratori M., Forti G., Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J. Clin. Endocrinol. Metab. 1999;84:1670–1678. doi: 10.1210/jcem.84.5.5670. PubMed DOI
Antal M.C., Krust A., Chambon P., Mark M. Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERβ-null mutant. Proc. Natl. Acad. Sci. USA. 2008;105:2433–2438. doi: 10.1073/pnas.0712029105. PubMed DOI PMC
Dupont S., Krust A., Gansmuller A., Dierich A., Chambon P., Mark M. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development. 2000;127:4277–4291. PubMed
Eddy E.M., Washburn T.F., Bunch D.O., Goulding E.H., Gladen B.C., Lubahn D.B., Korach K.S. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology. 1996;137:4796–4805. PubMed
Krege J.H., Hodgin J.B., Couse J.F., Enmark E., Warner M., Mahler J.F., Sar M., Korach K.S., Gustafsson J.A., Smithies O. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl. Acad. Sci. USA. 1998;95:15677–15682. doi: 10.1073/pnas.95.26.15677. PubMed DOI PMC
Levin E.R. Integration of the extranuclear and nuclear actions of estrogen. Mol. Endocrinol. 2005;19:1951–1959. doi: 10.1210/me.2004-0390. PubMed DOI PMC
Fisher C.R., Graves K.H., Parlow A.F., Simpson E.R. Characterization of mice deficient in aromatase (ARKO) because of targeted disruption of the CYP19 gene. Proc. Natl. Acad. Sci. USA. 1998;95:6965–6970. doi: 10.1073/pnas.95.12.6965. PubMed DOI PMC
Robertson K.M., O’Donnell L., Jones M.E., Meachem S.J., Boon W.C., Fisher C.R., Graves K.H., McLachlan R.I., Simpson E.R. Impairment of spermatogenesis in mice lacking a functional aromatase (CYP 19) gene. Proc. Natl. Acad. Sci. USA. 1999;96:7986–7991. doi: 10.1073/pnas.96.14.7986. PubMed DOI PMC
Dumasia K., Kumar A., Kadam L., Balasinor N.H. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats. J. Endocrinol. 2015;225:169–180. doi: 10.1530/JOE-15-0045. PubMed DOI
Honda S., Harada N., Ito S., Takagi Y., Maeda S. Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the Cyp19 gene. Biochem. Biophys. Res. Commun. 1998;252:445–449. doi: 10.1006/bbrc.1998.9672. PubMed DOI
Robertson K.M., Simpson E.R., Lacham-Kaplan O., Jones M.E. Characterization of the fertility of male aromatase knockout mice. J. Androl. 2001;22:825–830. PubMed
Dudek P., Picard D. Genomics of signaling crosstalk of estrogen receptor α in breast cancer cells. PLoS ONE. 2008;3:e1859. doi: 10.1371/journal.pone.0001859. PubMed DOI PMC
Lee K.H., Hess R.A., Bahr J.M., Lubahn D.B., Taylor J., Bunick D. Estrogen receptor α has a functional role in the mouse rete testis and efferent ductules. Biol. Reprod. 2000;63:1873–1880. doi: 10.1095/biolreprod63.6.1873. PubMed DOI
Mahato D., Goulding E.H., Korach K.S., Eddy E.M. Estrogen receptor-α is required by the supporting somatic cells for spermatogenesis. Mol. Cell. Endocrinol. 2001;178:57–63. doi: 10.1016/S0303-7207(01)00410-5. PubMed DOI
Joseph A., Hess R.A., Schaeffer D.J., Ko C., Hudgin-Spivey S., Chambon P., Shur B.D. Absence of estrogen receptor α leads to physiological alterations in the mouse epididymis and consequent defects in sperm function. Biol. Reprod. 2010;82:948–957. doi: 10.1095/biolreprod.109.079889. PubMed DOI PMC
Joseph A., Shur B.D., Ko C., Chambon P., Hess R.A. Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor α knockout mouse. Biol. Reprod. 2010;82:958–967. doi: 10.1095/biolreprod.109.080366. PubMed DOI PMC
Nanjappa M.K., Hess R.A., Medrano T.I., Locker S.H., Levin E.R., Cooke P.S. Membrane-localized estrogen receptor 1 is required for normal male reproductive development and function in mice. Endocrinology. 2016;157:2909–2919. doi: 10.1210/en.2016-1085. PubMed DOI PMC
Sinkevicius K.W., Laine M., Lotan T.L., Woloszyn K., Richburg J.H., Greene G.L. Estrogen-dependent and -independent estrogen receptor-α signaling separately regulate male fertility. Endocrinology. 2009;150:2898–2905. doi: 10.1210/en.2008-1016. PubMed DOI PMC
Shaha C. Estrogens and spermatogenesis. Adv. Exp. Med. Biol. 2008;636:42–64. PubMed
Delbes G., Levacher C., Pairault C., Racine C., Duquenne C., Krust A., Habert R. Estrogen receptor β-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology. 2004;145:3395–3403. doi: 10.1210/en.2003-1479. PubMed DOI
Gould M.L., Hurst P.R., Nicholson H.D. The effects of oestrogen receptors α and β on testicular cell number and steroidogenesis in mice. Reproduction. 2007;134:271–279. doi: 10.1530/REP-07-0025. PubMed DOI
Antal M.C., Petit-Demouliere B., Meziane H., Chambon P., Krust A. Estrogen dependent activation function of ERβ is essential for the sexual behavior of mouse females. Proc. Natl. Acad. Sci. USA. 2012;109:19822–19827. doi: 10.1073/pnas.1217668109. PubMed DOI PMC
Maneix L., Antonson P., Humire P., Rochel-Maia S., Castaneda J., Omoto Y., Kim H.J., Warner M., Gustafsson J.A. Estrogen receptor β exon 3-deleted mouse: The importance of non-ere pathways in ERβ signaling. Proc. Natl. Acad. Sci. USA. 2015;112:5135–5140. doi: 10.1073/pnas.1504944112. PubMed DOI PMC
Isensee J., Meoli L., Zazzu V., Nabzdyk C., Witt H., Soewarto D., Effertz K., Fuchs H., Gailus-Durner V., Busch D., et al. Expression pattern of G protein-coupled receptor 30 in lacz reporter mice. Endocrinology. 2009;150:1722–1730. doi: 10.1210/en.2008-1488. PubMed DOI
Balasinor N.H., D'Souza R., Nanaware P., Idicula-Thomas S., Kedia-Mokashi N., He Z., Dym M. Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats. Reprod. Biol. Endocrinol. 2010;8:72. doi: 10.1186/1477-7827-8-72. PubMed DOI PMC
Sharpe R.M., Skakkebaek N.E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993;341:1392–1395. doi: 10.1016/0140-6736(93)90953-E. PubMed DOI
O’Donnell L., Robertson K.M., Jones M.E., Simpson E.R. Estrogen and spermatogenesis. Endocr. Rev. 2001;22:289–318. doi: 10.1210/edrv.22.3.0431. PubMed DOI
Smith E.P., Boyd J., Frank G.R., Takahashi H., Cohen R.M., Specker B., Williams T.C., Lubahn D.B., Korach K.S. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 1994;331:1056–1061. doi: 10.1056/NEJM199410203311604. PubMed DOI
Carani C., Qin K., Simoni M., Faustini-Fustini M., Serpente S., Boyd J., Korach K.S., Simpson E.R. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 1997;337:91–95. doi: 10.1056/NEJM199707103370204. PubMed DOI
Herrmann B.L., Saller B., Janssen O.E., Gocke P., Bockisch A., Sperling H., Mann K., Broecker M. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the Cyp19 gene. J. Clin. Endocrinol. Metab. 2002;87:5476–5484. doi: 10.1210/jc.2002-020498. PubMed DOI
Prossnitz E.R., Barton M. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor gper. Prostaglandins Lipid Mediat. 2009;89:89–97. doi: 10.1016/j.prostaglandins.2009.05.001. PubMed DOI PMC
Clarke M., Pearl C.A. Alterations in the estrogen environment of the testis contribute to declining sperm production in aging rats. Syst. Biol. Reprod. Med. 2014;60:89–97. doi: 10.3109/19396368.2014.885995. PubMed DOI
Hamden K., Silandre D., Delalande C., Elfeki A., Carreau S. Protective effects of estrogens and caloric restriction during aging on various rat testis parameters. Asian J. Androl. 2008;10:837–845. doi: 10.1111/j.1745-7262.2008.00430.x. PubMed DOI
Chieffi P., Colucci D’Amato L., Guarino F., Salvatore G., Angelini F. 17 β-estradiol induces spermatogonial proliferation through mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activity in the lizard (podarcis s. Sicula) Mol. Reprod. Dev. 2002;61:218–225. doi: 10.1002/mrd.1151. PubMed DOI
Chieffi P., Colucci-D’Amato G.L., Staibano S., Franco R., Tramontano D. Estradiol-induced mitogen-activated protein kinase (extracellular signal-regulated kinase 1 and 2) activity in the frog (rana esculenta) testis. J. Endocrinol. 2000;167:77–84. doi: 10.1677/joe.0.1670077. PubMed DOI
Dumasia K., Kumar A., Deshpande S., Sonawane S., Balasinor N.H. Differential roles of estrogen receptors, ESR1 and ESR2, in adult rat spermatogenesis. Mol. Cell. Endocrinol. 2016;428:89–100. doi: 10.1016/j.mce.2016.03.024. PubMed DOI
D'Souza R., Pathak S., Upadhyay R., Gaonkar R., D’Souza S., Sonawane S., Gill-Sharma M., Balasinor N.H. Disruption of tubulobulbar complex by high intratesticular estrogens leading to failed spermiation. Endocrinology. 2009;150:1861–1869. doi: 10.1210/en.2008-1232. PubMed DOI
Upadhyay R.D., Kumar A.V., Ganeshan M., Balasinor N.H. Tubulobulbar complex: Cytoskeletal remodeling to release spermatozoa. Reprod. Biol. Endocrinol. 2012;10:27. doi: 10.1186/1477-7827-10-27. PubMed DOI PMC
Yanagimachi R. Mammalian fertilization. In: Knobil E., Neill J.D., editors. The Physiology of Reproduction. Raven Press; New York, NY, USA: 1994. pp. 189–317.
Adeoya-Osiguwa S.A., Markoulaki S., Pocock V., Milligan S.R., Fraser L.R. 17β-estradiol and environmental estrogens significantly affect mammalian sperm function. Hum. Reprod. 2003;18:100–107. doi: 10.1093/humrep/deg037. PubMed DOI
Bathla H., Guraya S.S., Sangha G.K. Role of estradiol in the capacitation and acrosome reaction of hamster epididymal spermatozoa in the isolated uterus of mice incubated in vitro. Indian J. Phys. Pharmacol. 1999;43:211–217. PubMed
Ded L., Dostalova P., Dorosh A., Dvorakova-Hortova K., Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reprod. Biol. Endocrinol. 2010;8:87. doi: 10.1186/1477-7827-8-87. PubMed DOI PMC
Fraser L.R., Beyret E., Milligan S.R., Adeoya-Osiguwa S.A. Effects of estrogenic xenobiotics on human and mouse spermatozoa. Hum. Reprod. 2006;21:1184–1193. doi: 10.1093/humrep/dei486. PubMed DOI
He Y.F., Yue L.M., He Y.P., Zhang J.H., Zheng J., Gao X.P. Effects of estrogen on acrosome reaction and intracellular calcium in human spermatozoa and the possible mechanism concerned. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36:500–502. PubMed
Luconi M., Bonaccorsi L., Forti G., Baldi E. Effects of estrogenic compounds on human spermatozoa: Evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane. Mol. Cell. Endocrinol. 2001;178:39–45. doi: 10.1016/S0303-7207(01)00416-6. PubMed DOI
Mohamed el S.A., Park Y.J., Song W.H., Shin D.H., You Y.A., Ryu B.Y., Pang M.G. Xenoestrogenic compounds promote capacitation and an acrosome reaction in porcine sperm. Theriogenology. 2011;75:1161–1169. doi: 10.1016/j.theriogenology.2010.11.028. PubMed DOI
Vigil P., Toro A., Godoy A. Physiological action of oestradiol on the acrosome reaction in human spermatozoa. Andrologia. 2008;40:146–151. doi: 10.1111/j.1439-0272.2007.00814.x. PubMed DOI
Ded L., Sebkova N., Cerna M., Elzeinova F., Dostalova P., Peknicova J., Dvorakova-Hortova K. In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction. 2013;145:255–263. doi: 10.1530/REP-12-0472. PubMed DOI
Shanle E.K., Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action. Chem. Res. Toxicol. 2011;24:6–19. doi: 10.1021/tx100231n. PubMed DOI PMC
Brzozowski A.M., Pike A.C., Dauter Z., Hubbard R.E., Bonn T., Engstrom O., Ohman L., Greene G.L., Gustafsson J.A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:753–758. doi: 10.1038/39645. PubMed DOI
Pike A.C., Brzozowski A.M., Hubbard R.E., Bonn T., Thorsell A.G., Engstrom O., Ljunggren J., Gustafsson J.A., Carlquist M. Structure of the ligand-binding domain of oestrogen receptor β in the presence of a partial agonist and a full antagonist. EMBO J. 1999;18:4608–4618. doi: 10.1093/emboj/18.17.4608. PubMed DOI PMC
Troisi R., Hatch E.E., Titus-Ernstoff L., Hyer M., Palmer J.R., Robboy S.J., Strohsnitter W.C., Kaufman R., Herbst A.L., Hoover R.N. Cancer risk in women prenatally exposed to diethylstilbestrol. Int. J. Cancer. 2007;121:356–360. doi: 10.1002/ijc.22631. PubMed DOI
Wilcox A.J., Baird D.D., Weinberg C.R., Hornsby P.P., Herbst A.L. Fertility in men exposed prenatally to diethylstilbestrol. N. Engl. J. Med. 1995;332:1411–1416. doi: 10.1056/NEJM199505253322104. PubMed DOI
Newbold R.R. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol. Appl. Pharmacol. 2004;199:142–150. doi: 10.1016/j.taap.2003.11.033. PubMed DOI
Newbold R.R., Hanson R.B., Jefferson W.N., Bullock B.C., Haseman J., McLachlan J.A. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis. 2000;21:1355–1363. doi: 10.1093/carcin/21.5.355. PubMed DOI
Filipiak E., Walczak-Jedrzejowska R., Oszukowska E., Guminska A., Marchlewska K., Kula K., Slowikowska-Hilczer J. Xenoestrogens diethylstilbestrol and zearalenone negatively influence pubertal rat’s testis. Folia Histochem. Cytobiol. 2009;47:S113–S120. doi: 10.2478/v10042-009-0049-4. PubMed DOI
Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc. Soc. Exp. Biol. Med. 2000;224:61–68. doi: 10.1046/j.1525-1373.2000.22402.x. PubMed DOI
Kyselova V., Peknicova J., Boubelik M., Buckiova D. Body and organ weight, sperm acrosomal status and reproduction after genistein and diethylstilbestrol treatment of CD1 mice in a multigenerational study. Theriogenology. 2004;61:1307–1325. doi: 10.1016/j.theriogenology.2003.07.017. PubMed DOI
Li Y., Hamilton K.J., Lai A.Y., Burns K.A., Li L., Wade P.A., Korach K.S. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, AND HDAC2) in the mouse seminal vesicle. Environ. Health Perspect. 2014;122:262–268. doi: 10.1289/ehp.1307351. PubMed DOI PMC
Takemura H., Shim J.Y., Sayama K., Tsubura A., Zhu B.T., Shimoi K. Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 2007;103:170–177. doi: 10.1016/j.jsbmb.2006.08.008. PubMed DOI
Yang J.Y., Wang G.X., Liu J.L., Fan J.J., Cui S. Toxic effects of zearalenone and its derivatives α-zearalenol on male reproductive system in mice. Reprod. Toxicol. 2007;24:381–387. doi: 10.1016/j.reprotox.2007.05.009. PubMed DOI
Zatecka E., Ded L., Elzeinova F., Kubatova A., Dorosh A., Margaryan H., Dostalova P., Korenkova V., Hoskova K., Peknicova J. Effect of zearalenone on reproductive parameters and expression of selected testicular genes in mice. Reprod. Toxicol. 2014;45:20–30. doi: 10.1016/j.reprotox.2014.01.003. PubMed DOI
Adibnia E., Razi M., Malekinejad H. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis. Toxicon. 2016;120:133–146. doi: 10.1016/j.toxicon.2016.08.009. PubMed DOI
17α-Ethynylestradiol alters testicular epigenetic profiles and histone-to-protamine exchange in mice
New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling