New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling

. 2018 Dec 12 ; 19 (12) : . [epub] 20181212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30545117

Grantová podpora
GA-18-11275S Grantová Agentura České Republiky
GAUK No. 693118 Grantová Agentura, Univerzita Karlova
CZ.1.05/1.1.00/02.0109 BIOCEV
SVV260440 Charles University in Prague
86652036 Institute of Biotechnology RVO

17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation-called capacitation-and sperm⁻egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.

Zobrazit více v PubMed

Yanagimachi R. Mammalian fertilization. In: Knobil E., Neill J.D., editors. The Physiology of Reproduction. Raven Press; New York, NY, USA: 1994. pp. 189–317.

Naz R.K., Rajesh P.B. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod. Biol. Endocrinol. 2004;2:75–87. doi: 10.1186/1477-7827-2-75. PubMed DOI PMC

Visconti P.E., Bailey J.L., Moore G.D., Pan D., Olds-Clarke P., Kopf G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121:1129–1137. PubMed

Wang J., Qi L., Huang S., Zhou T., Guo Y., Wang G., Guo X., Zhou Z., Sha J. Quantitative Phosphoproteomics Analysis Reveals a Key Role of IGF1R Tyrosine Kinase in Human Sperm Capacitation. Mol. Cell. Proteomics. 2015;14:1104–1112. doi: 10.1074/mcp.M114.045468. PubMed DOI PMC

Alvau A., Battistone M.A., Gervasi M.G., Navarrete F.A., Xu X., Sánchez-Cárdenas C., De la Vega-Beltran J.L., Da Ros V.G., Greer P.A., Darszon A., et al. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development. 2016;143:2325–2333. doi: 10.1242/dev.136499. PubMed DOI PMC

Itach S.B., Finkelstein M., Etkovitz N., Breitbart H. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Dev. Biol. 2012;362:154–161. doi: 10.1016/j.ydbio.2011.12.002. PubMed DOI

Suarez S.S., Pacey A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update. 2006;12:23–37. doi: 10.1093/humupd/dmi047. PubMed DOI

Peknicová J., Kyselová V., Boubelík M., Buckiová D. Effect of an endocrine disruptor on mammalian fertility. Application of monoclonal antibodies against sperm proteins as markers for testing sperm damage. Am. J. Reprod. Immunol. 2002;47:311–318. doi: 10.1034/j.1600-0897.2002.01112.x. PubMed DOI

Baldi E., Luconi M., Muratori M., Marchiani S., Tamburrino L., Forti G. Nongenomic activation of spermatozoa by steroid hormones: Facts and fictions. Mol. Cell. Endocrinol. 2009;308:39–46. doi: 10.1016/j.mce.2009.02.006. PubMed DOI

Ded L., Dostalova P., Dorosh A., Dvorakova-Hortova K., Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reprod. Biol. Endocrinol. 2010;8:87. doi: 10.1186/1477-7827-8-87. PubMed DOI PMC

Sebkova N., Cerna M., Ded L., Peknicova J., Dvorakova-Hortova K. The slower the better: How sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction. 2012;143:297–307. doi: 10.1530/REP-11-0326. PubMed DOI

Ded L., Sebkova N., Cerna M., Elzeinova F., Dostalova P., Peknicova J., Dvorakova-Hortova K. In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction. 2013;145:255–263. doi: 10.1530/REP-12-0472. PubMed DOI

Luconi M., Muratori M., Forti G., Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J. Clin. Endocrinol. Metabol. 1999;84:1670–1678. doi: 10.1210/jcem.84.5.5670. PubMed DOI

Noguchi T., Fujinoki M., Kitazawa M., Inaba N. Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod. Med. Biol. 2008;7:63–74. doi: 10.1111/j.1447-0578.2008.00202.x. PubMed DOI PMC

Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction. 2010;140:453–464. doi: 10.1530/REP-10-0168. PubMed DOI

Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod. Med. Biol. 2014;13:143–152. doi: 10.1007/s12522-013-0175-8. PubMed DOI PMC

Aquila S., De Amicis F. Steroid receptors and their ligands: Effects on male gamete functions. Exp. Cell Res. 2014;328:303–313. doi: 10.1016/j.yexcr.2014.07.015. PubMed DOI

Dostalova P., Zatecka E., Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int. J. Mol. Sci. 2017;18:904. doi: 10.3390/ijms18050904. PubMed DOI PMC

Marino M., Acconcia F., Bresciani F., Weisz A., Trentalance A. Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol. Biol. Cell. 2002;13:3720–3729. doi: 10.1091/mbc.e02-03-0153. PubMed DOI PMC

Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., Trentalance A., Visca P., Marino M. Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17beta-estradiol. Mol. Biol. Cell. 2005;16:231–237. doi: 10.1091/mbc.e04-07-0547. PubMed DOI PMC

Ahola T.M., Manninen T., Alkio N., Ylikomi T. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology. 2002;143:3376–3384. doi: 10.1210/en.2001-211445. PubMed DOI

Thomas P., Pang Y., Filardo E.J., Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–632. doi: 10.1210/en.2004-1064. PubMed DOI

Vivacqua A., Bonofiglio D., Recchia A.G., Musti A.M., Picard D., Andò S., Maggiolini M. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol. 2006;20:631–646. doi: 10.1210/me.2005-0280. PubMed DOI

Hewitt S.C., Deroo B.J., Korach K.S. Signal transduction. A new mediator for an old hormone? Science. 2005;307:1572–1573. doi: 10.1126/science.1110345. PubMed DOI

Manavathi B., Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: Two sides of the coin. J. Cell. Physiol. 2006;207:594–604. doi: 10.1002/jcp.20551. PubMed DOI

Marino M., Galluzzo P., Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006;7:497–508. doi: 10.2174/138920206779315737. PubMed DOI PMC

Klinge C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–2919. doi: 10.1093/nar/29.14.2905. PubMed DOI PMC

Li C., Briggs M.R., Ahlborn T.E., Kraemer F.B., Liu J. Requirement of Sp1 and estrogen receptor alpha interaction in 17beta-estradiol-mediated transcriptional activation of the low density lipoprotein receptor gene expression. Endocrinology. 2001;142:1546–1553. doi: 10.1210/endo.142.4.8096. PubMed DOI

Safe S.H., Pallaroni L., Yoon K., Gaido K., Ross S., Saville B., McDonnell D. Toxicology of environmental estrogens. Reprod. Fertil. Dev. 2001;13:307–315. doi: 10.1071/RD00108. PubMed DOI

Stossi F., Likhite V.S., Katzenellenbogen J.A., Katzenellenbogen B.S. Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter. J. Biol. Chem. 2006;281:16272–16278. doi: 10.1074/jbc.M513405200. PubMed DOI

Glass C.K., Rosenfeld M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121–141. doi: 10.1101/gad.14.2.121. PubMed DOI

McKenna N.J., O’Malley B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108:465–474. doi: 10.1016/S0092-8674(02)00641-4. PubMed DOI

Sztein J.M., Farley J.S., Mobraaten L.E. In vitro fertilization with cryopreserved inbred mouse sperm. Biol. Reprod. 2000;63:1774–1780. doi: 10.1095/biolreprod63.6.1774. PubMed DOI

Liu L., Nutter L.M., Law N., McKerlie C. Sperm freezing and in vitro fertilization in three substrains of C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 2009;48:39–43. PubMed PMC

Goodson S.G., Zhang Z., Tsuruta J.K., Wang W., O’Brien D.A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 2011;84:1207–1215. doi: 10.1095/biolreprod.110.088989. PubMed DOI PMC

Bosakova Z., Tockstein A., Adamusova H., Coufal P., Sebkova N., Dvorakova-Hortova K. Kinetic analysis of decreased sperm fertilizing ability by fluorides and fluoroaluminates: A tool for analyzing the effect of environmental substances on biological events. Eur. Biophys. J. 2016;45:71–79. doi: 10.1007/s00249-015-1078-x. PubMed DOI

Dvořáková-Hortová K., Šandera M., Jursová M., Vašinová J., Pěknicová J. The influence of fluorides on mouse sperm capacitation. Anim. Reprod. Sci. 2008;108:157–170. doi: 10.1016/j.anireprosci.2007.07.015. PubMed DOI

Davis B.K., Byrne R., Hungund B. Studies on the mechanism of capacitation. II. Evidence for lipid transfer between plasma membrane of rat sperm and serum albu min during capacitation in vitro. Biochim. Biophys. Acta. 1979;558:257–266. doi: 10.1016/0005-2736(79)90260-8. PubMed DOI

Dow M.P.D., Bavister B.D. Direct contact is required between serum albu min and hamster spermatozoa for capacitation in vitro. Gamete Res. 1989;23:171–180. doi: 10.1002/mrd.1120230204. PubMed DOI

Romeu A.M., Martino E.E., Stoppani A.O.M. Structural requirements for the action of steroids as quenchers of albu min fluorescence. Biochim. Biophys. Acta. 1975;409:376–386. doi: 10.1016/0005-2760(75)90033-8. PubMed DOI

Stewart-Savage J. Effect of bovine serum albu min concentration and source on sperm capacitation in the golden hamster. Biol. Reprod. 1993;49:74–81. doi: 10.1095/biolreprod49.1.74. PubMed DOI

Asquith K.L., Baleato R.M., McLaughlin E.A., Nixon B., Aitken R.J. Tyrosine phosphorylation activates surface chaperones facilitating sperm–zona recognition. J. Cell. Sci. 2004;117:3645–3657. doi: 10.1242/jcs.01214. PubMed DOI

Nishimura I., Ui-Tei K., Saigo K., Ishii H., Sakuma Y., Kato M. 17-Estradiol at physiological concentrations augments Ca2+-activated K+ currents via estrogen receptor in the gonadotropin-releasing hormone neuronal cell line GT1-7. Endocrinology. 2008;149:774–782. doi: 10.1210/en.2007-0759. PubMed DOI

Hess R.A., Bunick D., Bahr J.M. Sperm, a source of estrogen. Environ. Health Perspect. 1995;103:59–62. doi: 10.1289/ehp.95103s759. PubMed DOI PMC

Shaikh A.A. Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol. Reprod. 1971;5:297–307. doi: 10.1093/biolreprod/5.3.297. PubMed DOI

Tarlatzis B.C., Pazaitou K., Bili H., Bontis J., Papadimas J., Lagos S., Spanos E., Mantalenakis S. Growth hormone, oestradiol, progesterone andtestosterone concentrations in follicular fluid after ovarian stimulation with various regimes for assisted reproduction. Hum. Reprod. 1993;8:1612–1616. doi: 10.1093/oxfordjournals.humrep.a137900. PubMed DOI

Jin M., Fujiwara E., Kakiuchi Y., Okabe M., Satouh Y., Baba S.A., Chiba K., Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitrofertilization. Proc. Natl. Acad. Sci. USA. 2011;108:4892–4896. doi: 10.1073/pnas.1018202108. PubMed DOI PMC

Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R. Acrosome reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. USA. 2001;108:20008–20011. doi: 10.1073/pnas.1116965108. PubMed DOI PMC

Mortimer S.T., van der Horst G., Motimer D. The future of computer-aided sperm analysis. Asian J. Androl. 2015;17:545–553. doi: 10.4103/1008-682X.154312. PubMed DOI PMC

Kozlík P., Bosáková Z., Tesařová E., Coufal P., Čabala R. Development of a solid-phase extraction with capillary liquid chromatography tandem mass spectrometry for analysis of estrogens in environmental water samples. J. Chromatogr. A. 2011;1218:2127–2132. doi: 10.1016/j.chroma.2010.10.033. PubMed DOI

Dvorakova-Hortova K., Honetschlägerová M., Tesařová E., Vašinová J., Frolíková M., Bosáková Z. Residual concentration of estriol during mouse sperm capacitation in vitro determined by HPLC method. Folia Zool. 2009;58:75–81.

Free M.J., Jaffe R.A. Collection of rete testis fluid from rats without previous efferent duct ligation. Biol. Reprod. 1979;20:269–278. doi: 10.1095/biolreprod20.2.269. PubMed DOI

Kelch R.P., Jenner M.R., Weinstein R., Kaplan S.L., Grumbach M.M. Estradiol and testosterone secretion by human, simian, and canine testes, in males with hypogonadism and in male pseudohermaphrodites with the feminizing testes syndrome. J. Clin. Investig. 1972;51:824–830. doi: 10.1172/JCI106877. PubMed DOI PMC

Abraham G.E., Odell W.D., Swerdloff R.S., Hopper K. Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17-hydroxyprogesterone, and estradiol-17 during the menstrual cycle. J. Clin. Endocrinol. Metabl. 1972;34:312–318. doi: 10.1210/jcem-34-2-312. PubMed DOI

Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Zigo M., Jonakova V., Manaskova-Postlerova P. Electrophoretic and zymographic characterization of proteins isolated by various extraction methods from ejaculated and capacitated boar sperms. Electrophoresis. 2011;32:1309–1318. doi: 10.1002/elps.201000558. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017.

Opatova P., Ihle M., Albrechtova J., Tomasek O., Kempenaers B., Forstmeier W. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 2016;6:295–304. doi: 10.1002/ece3.1868. PubMed DOI PMC

Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Kinetic Study of 17α-Estradiol Mechanism during Rat Sperm Capacitation

. 2022 Jun 25 ; 27 (13) : . [epub] 20220625

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...