New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA-18-11275S
Grantová Agentura České Republiky
GAUK No. 693118
Grantová Agentura, Univerzita Karlova
CZ.1.05/1.1.00/02.0109
BIOCEV
SVV260440
Charles University in Prague
86652036
Institute of Biotechnology RVO
PubMed
30545117
PubMed Central
PMC6321110
DOI
10.3390/ijms19124011
PII: ijms19124011
Knihovny.cz E-resources
- Keywords
- 17β-estradiol, CASA, HPLC MS/MS, acrosome reaction, autocatalysis, capacitation, kinetics, sperm,
- MeSH
- Acrosome Reaction drug effects MeSH
- Estradiol metabolism pharmacology MeSH
- Sperm Capacitation drug effects physiology MeSH
- Kinetics MeSH
- Sperm Motility drug effects MeSH
- Mice, Inbred C57BL MeSH
- Progesterone pharmacology MeSH
- Signal Transduction * MeSH
- Semen drug effects metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Estradiol MeSH
- Progesterone MeSH
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation-called capacitation-and sperm⁻egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
Institute of Vertebrate Biology v v i Czech Academy of Sciences Kvetna 8 603 65 Brno Czech Republic
See more in PubMed
Yanagimachi R. Mammalian fertilization. In: Knobil E., Neill J.D., editors. The Physiology of Reproduction. Raven Press; New York, NY, USA: 1994. pp. 189–317.
Naz R.K., Rajesh P.B. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod. Biol. Endocrinol. 2004;2:75–87. doi: 10.1186/1477-7827-2-75. PubMed DOI PMC
Visconti P.E., Bailey J.L., Moore G.D., Pan D., Olds-Clarke P., Kopf G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121:1129–1137. PubMed
Wang J., Qi L., Huang S., Zhou T., Guo Y., Wang G., Guo X., Zhou Z., Sha J. Quantitative Phosphoproteomics Analysis Reveals a Key Role of IGF1R Tyrosine Kinase in Human Sperm Capacitation. Mol. Cell. Proteomics. 2015;14:1104–1112. doi: 10.1074/mcp.M114.045468. PubMed DOI PMC
Alvau A., Battistone M.A., Gervasi M.G., Navarrete F.A., Xu X., Sánchez-Cárdenas C., De la Vega-Beltran J.L., Da Ros V.G., Greer P.A., Darszon A., et al. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development. 2016;143:2325–2333. doi: 10.1242/dev.136499. PubMed DOI PMC
Itach S.B., Finkelstein M., Etkovitz N., Breitbart H. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Dev. Biol. 2012;362:154–161. doi: 10.1016/j.ydbio.2011.12.002. PubMed DOI
Suarez S.S., Pacey A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update. 2006;12:23–37. doi: 10.1093/humupd/dmi047. PubMed DOI
Peknicová J., Kyselová V., Boubelík M., Buckiová D. Effect of an endocrine disruptor on mammalian fertility. Application of monoclonal antibodies against sperm proteins as markers for testing sperm damage. Am. J. Reprod. Immunol. 2002;47:311–318. doi: 10.1034/j.1600-0897.2002.01112.x. PubMed DOI
Baldi E., Luconi M., Muratori M., Marchiani S., Tamburrino L., Forti G. Nongenomic activation of spermatozoa by steroid hormones: Facts and fictions. Mol. Cell. Endocrinol. 2009;308:39–46. doi: 10.1016/j.mce.2009.02.006. PubMed DOI
Ded L., Dostalova P., Dorosh A., Dvorakova-Hortova K., Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reprod. Biol. Endocrinol. 2010;8:87. doi: 10.1186/1477-7827-8-87. PubMed DOI PMC
Sebkova N., Cerna M., Ded L., Peknicova J., Dvorakova-Hortova K. The slower the better: How sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction. 2012;143:297–307. doi: 10.1530/REP-11-0326. PubMed DOI
Ded L., Sebkova N., Cerna M., Elzeinova F., Dostalova P., Peknicova J., Dvorakova-Hortova K. In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction. 2013;145:255–263. doi: 10.1530/REP-12-0472. PubMed DOI
Luconi M., Muratori M., Forti G., Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J. Clin. Endocrinol. Metabol. 1999;84:1670–1678. doi: 10.1210/jcem.84.5.5670. PubMed DOI
Noguchi T., Fujinoki M., Kitazawa M., Inaba N. Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod. Med. Biol. 2008;7:63–74. doi: 10.1111/j.1447-0578.2008.00202.x. PubMed DOI PMC
Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction. 2010;140:453–464. doi: 10.1530/REP-10-0168. PubMed DOI
Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod. Med. Biol. 2014;13:143–152. doi: 10.1007/s12522-013-0175-8. PubMed DOI PMC
Aquila S., De Amicis F. Steroid receptors and their ligands: Effects on male gamete functions. Exp. Cell Res. 2014;328:303–313. doi: 10.1016/j.yexcr.2014.07.015. PubMed DOI
Dostalova P., Zatecka E., Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int. J. Mol. Sci. 2017;18:904. doi: 10.3390/ijms18050904. PubMed DOI PMC
Marino M., Acconcia F., Bresciani F., Weisz A., Trentalance A. Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol. Biol. Cell. 2002;13:3720–3729. doi: 10.1091/mbc.e02-03-0153. PubMed DOI PMC
Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., Trentalance A., Visca P., Marino M. Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17beta-estradiol. Mol. Biol. Cell. 2005;16:231–237. doi: 10.1091/mbc.e04-07-0547. PubMed DOI PMC
Ahola T.M., Manninen T., Alkio N., Ylikomi T. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology. 2002;143:3376–3384. doi: 10.1210/en.2001-211445. PubMed DOI
Thomas P., Pang Y., Filardo E.J., Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–632. doi: 10.1210/en.2004-1064. PubMed DOI
Vivacqua A., Bonofiglio D., Recchia A.G., Musti A.M., Picard D., Andò S., Maggiolini M. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol. 2006;20:631–646. doi: 10.1210/me.2005-0280. PubMed DOI
Hewitt S.C., Deroo B.J., Korach K.S. Signal transduction. A new mediator for an old hormone? Science. 2005;307:1572–1573. doi: 10.1126/science.1110345. PubMed DOI
Manavathi B., Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: Two sides of the coin. J. Cell. Physiol. 2006;207:594–604. doi: 10.1002/jcp.20551. PubMed DOI
Marino M., Galluzzo P., Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006;7:497–508. doi: 10.2174/138920206779315737. PubMed DOI PMC
Klinge C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–2919. doi: 10.1093/nar/29.14.2905. PubMed DOI PMC
Li C., Briggs M.R., Ahlborn T.E., Kraemer F.B., Liu J. Requirement of Sp1 and estrogen receptor alpha interaction in 17beta-estradiol-mediated transcriptional activation of the low density lipoprotein receptor gene expression. Endocrinology. 2001;142:1546–1553. doi: 10.1210/endo.142.4.8096. PubMed DOI
Safe S.H., Pallaroni L., Yoon K., Gaido K., Ross S., Saville B., McDonnell D. Toxicology of environmental estrogens. Reprod. Fertil. Dev. 2001;13:307–315. doi: 10.1071/RD00108. PubMed DOI
Stossi F., Likhite V.S., Katzenellenbogen J.A., Katzenellenbogen B.S. Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter. J. Biol. Chem. 2006;281:16272–16278. doi: 10.1074/jbc.M513405200. PubMed DOI
Glass C.K., Rosenfeld M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121–141. doi: 10.1101/gad.14.2.121. PubMed DOI
McKenna N.J., O’Malley B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108:465–474. doi: 10.1016/S0092-8674(02)00641-4. PubMed DOI
Sztein J.M., Farley J.S., Mobraaten L.E. In vitro fertilization with cryopreserved inbred mouse sperm. Biol. Reprod. 2000;63:1774–1780. doi: 10.1095/biolreprod63.6.1774. PubMed DOI
Liu L., Nutter L.M., Law N., McKerlie C. Sperm freezing and in vitro fertilization in three substrains of C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 2009;48:39–43. PubMed PMC
Goodson S.G., Zhang Z., Tsuruta J.K., Wang W., O’Brien D.A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 2011;84:1207–1215. doi: 10.1095/biolreprod.110.088989. PubMed DOI PMC
Bosakova Z., Tockstein A., Adamusova H., Coufal P., Sebkova N., Dvorakova-Hortova K. Kinetic analysis of decreased sperm fertilizing ability by fluorides and fluoroaluminates: A tool for analyzing the effect of environmental substances on biological events. Eur. Biophys. J. 2016;45:71–79. doi: 10.1007/s00249-015-1078-x. PubMed DOI
Dvořáková-Hortová K., Šandera M., Jursová M., Vašinová J., Pěknicová J. The influence of fluorides on mouse sperm capacitation. Anim. Reprod. Sci. 2008;108:157–170. doi: 10.1016/j.anireprosci.2007.07.015. PubMed DOI
Davis B.K., Byrne R., Hungund B. Studies on the mechanism of capacitation. II. Evidence for lipid transfer between plasma membrane of rat sperm and serum albu min during capacitation in vitro. Biochim. Biophys. Acta. 1979;558:257–266. doi: 10.1016/0005-2736(79)90260-8. PubMed DOI
Dow M.P.D., Bavister B.D. Direct contact is required between serum albu min and hamster spermatozoa for capacitation in vitro. Gamete Res. 1989;23:171–180. doi: 10.1002/mrd.1120230204. PubMed DOI
Romeu A.M., Martino E.E., Stoppani A.O.M. Structural requirements for the action of steroids as quenchers of albu min fluorescence. Biochim. Biophys. Acta. 1975;409:376–386. doi: 10.1016/0005-2760(75)90033-8. PubMed DOI
Stewart-Savage J. Effect of bovine serum albu min concentration and source on sperm capacitation in the golden hamster. Biol. Reprod. 1993;49:74–81. doi: 10.1095/biolreprod49.1.74. PubMed DOI
Asquith K.L., Baleato R.M., McLaughlin E.A., Nixon B., Aitken R.J. Tyrosine phosphorylation activates surface chaperones facilitating sperm–zona recognition. J. Cell. Sci. 2004;117:3645–3657. doi: 10.1242/jcs.01214. PubMed DOI
Nishimura I., Ui-Tei K., Saigo K., Ishii H., Sakuma Y., Kato M. 17-Estradiol at physiological concentrations augments Ca2+-activated K+ currents via estrogen receptor in the gonadotropin-releasing hormone neuronal cell line GT1-7. Endocrinology. 2008;149:774–782. doi: 10.1210/en.2007-0759. PubMed DOI
Hess R.A., Bunick D., Bahr J.M. Sperm, a source of estrogen. Environ. Health Perspect. 1995;103:59–62. doi: 10.1289/ehp.95103s759. PubMed DOI PMC
Shaikh A.A. Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol. Reprod. 1971;5:297–307. doi: 10.1093/biolreprod/5.3.297. PubMed DOI
Tarlatzis B.C., Pazaitou K., Bili H., Bontis J., Papadimas J., Lagos S., Spanos E., Mantalenakis S. Growth hormone, oestradiol, progesterone andtestosterone concentrations in follicular fluid after ovarian stimulation with various regimes for assisted reproduction. Hum. Reprod. 1993;8:1612–1616. doi: 10.1093/oxfordjournals.humrep.a137900. PubMed DOI
Jin M., Fujiwara E., Kakiuchi Y., Okabe M., Satouh Y., Baba S.A., Chiba K., Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitrofertilization. Proc. Natl. Acad. Sci. USA. 2011;108:4892–4896. doi: 10.1073/pnas.1018202108. PubMed DOI PMC
Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R. Acrosome reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. USA. 2001;108:20008–20011. doi: 10.1073/pnas.1116965108. PubMed DOI PMC
Mortimer S.T., van der Horst G., Motimer D. The future of computer-aided sperm analysis. Asian J. Androl. 2015;17:545–553. doi: 10.4103/1008-682X.154312. PubMed DOI PMC
Kozlík P., Bosáková Z., Tesařová E., Coufal P., Čabala R. Development of a solid-phase extraction with capillary liquid chromatography tandem mass spectrometry for analysis of estrogens in environmental water samples. J. Chromatogr. A. 2011;1218:2127–2132. doi: 10.1016/j.chroma.2010.10.033. PubMed DOI
Dvorakova-Hortova K., Honetschlägerová M., Tesařová E., Vašinová J., Frolíková M., Bosáková Z. Residual concentration of estriol during mouse sperm capacitation in vitro determined by HPLC method. Folia Zool. 2009;58:75–81.
Free M.J., Jaffe R.A. Collection of rete testis fluid from rats without previous efferent duct ligation. Biol. Reprod. 1979;20:269–278. doi: 10.1095/biolreprod20.2.269. PubMed DOI
Kelch R.P., Jenner M.R., Weinstein R., Kaplan S.L., Grumbach M.M. Estradiol and testosterone secretion by human, simian, and canine testes, in males with hypogonadism and in male pseudohermaphrodites with the feminizing testes syndrome. J. Clin. Investig. 1972;51:824–830. doi: 10.1172/JCI106877. PubMed DOI PMC
Abraham G.E., Odell W.D., Swerdloff R.S., Hopper K. Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17-hydroxyprogesterone, and estradiol-17 during the menstrual cycle. J. Clin. Endocrinol. Metabl. 1972;34:312–318. doi: 10.1210/jcem-34-2-312. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Zigo M., Jonakova V., Manaskova-Postlerova P. Electrophoretic and zymographic characterization of proteins isolated by various extraction methods from ejaculated and capacitated boar sperms. Electrophoresis. 2011;32:1309–1318. doi: 10.1002/elps.201000558. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017.
Opatova P., Ihle M., Albrechtova J., Tomasek O., Kempenaers B., Forstmeier W. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 2016;6:295–304. doi: 10.1002/ece3.1868. PubMed DOI PMC
Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Kinetic Study of 17α-Estradiol Mechanism during Rat Sperm Capacitation