Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study

. 2018 ; 17 () : 444-451. [epub] 20171105

Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29159057
Odkazy

PubMed 29159057
PubMed Central PMC5684496
DOI 10.1016/j.nicl.2017.11.002
PII: S2213-1582(17)30282-6
Knihovny.cz E-zdroje

OBJECTIVES: To investigate spatial patterns of gray matter (GM) atrophy and their association with disability progression in patients with early relapsing-remitting multiple sclerosis (MS) in a longitudinal setting. METHODS: Brain MRI and clinical neurological assessments were obtained in 152 MS patients at baseline and after 10 years of follow-up. Patients were classified into those with confirmed disability progression (CDP) (n = 85) and those without CDP (n = 67) at the end of the study. An optimized, longitudinal source-based morphometry (SBM) pipeline, which utilizes independent component analysis, was used to identify eight spatial patterns of common GM volume co-variation in a data-driven manner. GM volume at baseline and rates of change were compared between patients with CDP and those without CDP. RESULTS: The identified patterns generally included structurally or functionally related GM regions. No significant differences were detected at baseline GM volume between the sub-groups. Over the follow-up, patients with CDP experienced a significantly greater rate of GM atrophy within two of the eight patterns, after correction for multiple comparisons (corrected p-values of 0.001 and 0.007). The patterns of GM atrophy associated with the development of CDP included areas involved in motor functioning and cognitive domains such as learning and memory. CONCLUSION: SBM analysis offers a novel way to study the temporal evolution of regional GM atrophy. Over 10 years of follow-up, disability progression in MS is related to GM atrophy in areas associated with motor and cognitive functioning.

Komentář v

PubMed

Zobrazit více v PubMed

Avants B.B., Yushkevich P., Pluta J., Minkoff D., Korczykowski M., Detre J., Gee J.C. The optimal template effect in hippocampus studies of diseased populations. NeuroImage. 2010;49:2457–2466. PubMed PMC

Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging. 2004;23:137–152. PubMed

Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001;125:279–284. PubMed

Bergsland N., Horakova D., Dwyer M.G., Dolezal O., Seidl Z.K., Vaneckova M., Krasensky J., Havrdova E., Zivadinov R. Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am. J. Neuroradiol. 2012;33:1573–1578. PubMed PMC

Bergsland N., Zivadinov R., Dwyer M.G., Weinstock-Guttman B., Benedict R.H. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult. Scler. 2016;22:1327–1336. PubMed

Bonavita S., Sacco R., Esposito S., d'Ambrosio A., Della Corte M., Corbo D., Docimo R., Gallo A., Lavorgna L., Cirillo M., Bisecco A., Esposito F., Tedeschi G. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur. J. Neurol. 2017;24:27–36. PubMed

Caneda M.A., Vecino M.C. The correlation between EDSS and cognitive impairment in MS patients. Assessment of a Brazilian population using a BICAMS version. Arq. Neuropsiquiatr. 2016;74:974–981. PubMed

Ciarochi J.A., Calhoun V.D., Lourens S., Long J.D., Johnson H.J., Bockholt H.J., Liu J., Plis S.M., Paulsen J.S., Turner J.A., Investigators, P-H, Coordinators of the Huntington Study, G Patterns of co-occurring gray matter concentration loss across the Huntington disease prodrome. Front. Neurol. 2016;7:147. PubMed PMC

Coppen E.M., van der Grond J., Hafkemeijer A., Rombouts S.A., Roos R.A. Early grey matter changes in structural covariance networks in Huntington's disease. Neuroimage Clin. 2016;12:806–814. PubMed PMC

Dalton C.M., Chard D.T., Davies G.R., Miszkiel K.A., Altmann D.R., Fernando K., Plant G.T., Thompson A.J., Miller D.H. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain. 2004;127:1101–1107. PubMed

De Stefano N., Stromillo M.L., Giorgio A., Bartolozzi M.L., Battaglini M., Baldini M., Portaccio E., Amato M.P., Sormani M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2016;87:93–99. PubMed PMC

Deloire M., Ruet A., Hamel D., Bonnet M., Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult. Scler. 2010;16:581–587. PubMed

Dwyer M.G., Bergsland N., Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. NeuroImage. 2014;90:207–217. PubMed

Eshaghi A., Bodini B., Ridgway G.R., Garcia-Lorenzo D., Tozer D.J., Sahraian M.A., Thompson A.J., Ciccarelli O. Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis. NeuroImage. 2014;86:257–264. PubMed PMC

Filippi M., Preziosa P., Copetti M., Riccitelli G., Horsfield M.A., Martinelli V., Comi G., Rocca M.A. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology. 2013;81:1759–1767. PubMed

Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., Matthews P.M., Beckmann C.F., Mackay C.E. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U. S. A. 2009;106:7209–7214. PubMed PMC

Fisher E., Lee J.C., Nakamura K., Rudick R.A. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 2008;64:255–265. PubMed

Gelineau-Morel R., Tomassini V., Jenkinson M., Johansen-Berg H., Matthews P.M., Palace J. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum. Brain Mapp. 2012;33:2802–2814. PubMed PMC

Geurts J.J., Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol. 2008;7:841–851. PubMed

Hafkemeijer A., Altmann-Schneider I., de Craen A.J., Slagboom P.E., van der Grond J., Rombouts S.A. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell. 2014;13:1068–1074. PubMed PMC

Havrdova E., Zivadinov R., Krasensky J., Dwyer M.G., Novakova I., Dolezal O., Ticha V., Dusek L., Houzvickova E., Cox J.L., Bergsland N., Hussein S., Svobodnik A., Seidl Z., Vaneckova M., Horakova D. Randomized study of interferon beta-1a, low-dose azathioprine, and low-dose corticosteroids in multiple sclerosis. Mult. Scler. 2009;15:965–976. PubMed

Himberg J., Hyvarinen A., Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage. 2004;22:1214–1222. PubMed

Hofstetter L., Naegelin Y., Filli L., Kuster P., Traud S., Smieskova R., Mueller-Lenke N., Kappos L., Gass A., Sprenger T., Penner I.K., Nichols T.E., Vrenken H., Barkhof F., Polman C., Radue E.W., Borgwardt S.J., Bendfeldt K. Progression in disability and regional grey matter atrophy in relapsing-remitting multiple sclerosis. Mult. Scler. 2014;20:202–213. PubMed PMC

Jacobsen C., Hagemeier J., Myhr K.M., Nyland H., Lode K., Bergsland N., Ramasamy D.P., Dalaker T.O., Larsen J.P., Farbu E., Zivadinov R. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry. 2014;85:1109–1115. PubMed

Kasparek T., Marecek R., Schwarz D., Prikryl R., Vanicek J., Mikl M., Ceskova E. Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum. Brain Mapp. 2010;31:300–310. PubMed PMC

Klein A., Andersson J., Ardekani B.A., Ashburner J., Avants B., Chiang M.C., Christensen G.E., Collins D.L., Gee J., Hellier P., Song J.H., Jenkinson M., Lepage C., Rueckert D., Thompson P., Vercauteren T., Woods R.P., Mann J.J., Parsey R.V. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage. 2009;46:786–802. PubMed PMC

Moccia M., Lanzillo R., Palladino R., Chang K.C., Costabile T., Russo C., De Rosa A., Carotenuto A., Sacca F., Maniscalco G.T., Brescia Morra V. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult. Scler. 2016;22:659–667. PubMed

Patenaude B., Smith S.M., Kennedy D.N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56:907–922. PubMed PMC

Pitteri M., Romualdi C., Magliozzi R., Monaco S., Calabrese M. Cognitive impairment predicts disability progression and cortical thinning in MS: an 8-year study. Mult. Scler. 2017;23:848–854. PubMed

Popescu V., Agosta F., Hulst H.E., Sluimer I.C., Knol D.L., Sormani M.P., Enzinger C., Ropele S., Alonso J., Sastre-Garriga J., Rovira A., Montalban X., Bodini B., Ciccarelli O., Khaleeli Z., Chard D.T., Matthews L., Palace J., Giorgio A., De Stefano N., Eisele P., Gass A., Polman C.H., Uitdehaag B.M., Messina M.J., Comi G., Filippi M., Barkhof F., Vrenken H., Group, M.S. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2013;84:1082–1091. PubMed

Poser C.M., Paty D.W., Scheinberg L., McDonald W.I., Davis F.A., Ebers G.C., Johnson K.P., Sibley W.A., Silberberg D.H., Tourtellotte W.W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 1983;13:227–231. PubMed

Rudko D.A., Derakhshan M., Maranzano J., Nakamura K., Arnold D.L., Narayanan S. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging. Neuroimage Clin. 2016;12:858–868. PubMed PMC

Sepulcre J., Goni J., Masdeu J.C., Bejarano B., Velez de Mendizabal N., Toledo J.B., Villoslada P. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch. Neurol. 2009;66:173–179. PubMed

Smith S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002;17:143–155. PubMed PMC

Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44:83–98. PubMed

Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., De Stefano N. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17:479–489. PubMed

Steenwijk M.D., Geurts J.J., Daams M., Tijms B.M., Wink A.M., Balk L.J., Tewarie P.K., Uitdehaag B.M., Barkhof F., Vrenken H., Pouwels P.J. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016;139:115–126. PubMed

Uher T., Vaneckova M., Sormani M.P., Krasensky J., Sobisek L., Dusankova J.B., Seidl Z., Havrdova E., Kalincik T., Benedict R.H., Horakova D. Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach. Eur. J. Neurol. 2017;24:292–301. PubMed

Xu L., Groth K.M., Pearlson G., Schretlen D.J., Calhoun V.D. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum. Brain Mapp. 2009;30:711–724. PubMed PMC

Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 2001;20:45–57. PubMed

Zivadinov R., Havrdova E., Bergsland N., Tyblova M., Hagemeier J., Seidl Z., Dwyer M.G., Vaneckova M., Krasensky J., Carl E., Kalincik T., Horakova D. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268:831–841. PubMed

Zivadinov R., Uher T., Hagemeier J., Vaneckova M., Ramasamy D.P., Tyblova M., Bergsland N., Seidl Z., Dwyer M.G., Krasensky J., Havrdova E., Horakova D. A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult. Scler. 2016;22:1709–1718. PubMed

Zivadinov R., Ramasamy D.P., Vaneckova M., Gandhi S., Chandra A., Hagemeier J., Bergsland N., Polak P., Benedict R.H., Hojnacki D., Weinstock-Guttman B. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 2017 Sep;23(10):1336–1345. (1352458516678083) PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...