Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study
Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29159057
PubMed Central
PMC5684496
DOI
10.1016/j.nicl.2017.11.002
PII: S2213-1582(17)30282-6
Knihovny.cz E-zdroje
- Klíčová slova
- Atrophy, Disability, Gray matter, MRI, Multiple sclerosis,
- MeSH
- atrofie MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek diagnostické zobrazování patologie MeSH
- progrese nemoci * MeSH
- relabující-remitující roztroušená skleróza diagnostické zobrazování patologie MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: To investigate spatial patterns of gray matter (GM) atrophy and their association with disability progression in patients with early relapsing-remitting multiple sclerosis (MS) in a longitudinal setting. METHODS: Brain MRI and clinical neurological assessments were obtained in 152 MS patients at baseline and after 10 years of follow-up. Patients were classified into those with confirmed disability progression (CDP) (n = 85) and those without CDP (n = 67) at the end of the study. An optimized, longitudinal source-based morphometry (SBM) pipeline, which utilizes independent component analysis, was used to identify eight spatial patterns of common GM volume co-variation in a data-driven manner. GM volume at baseline and rates of change were compared between patients with CDP and those without CDP. RESULTS: The identified patterns generally included structurally or functionally related GM regions. No significant differences were detected at baseline GM volume between the sub-groups. Over the follow-up, patients with CDP experienced a significantly greater rate of GM atrophy within two of the eight patterns, after correction for multiple comparisons (corrected p-values of 0.001 and 0.007). The patterns of GM atrophy associated with the development of CDP included areas involved in motor functioning and cognitive domains such as learning and memory. CONCLUSION: SBM analysis offers a novel way to study the temporal evolution of regional GM atrophy. Over 10 years of follow-up, disability progression in MS is related to GM atrophy in areas associated with motor and cognitive functioning.
Zobrazit více v PubMed
Avants B.B., Yushkevich P., Pluta J., Minkoff D., Korczykowski M., Detre J., Gee J.C. The optimal template effect in hippocampus studies of diseased populations. NeuroImage. 2010;49:2457–2466. PubMed PMC
Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging. 2004;23:137–152. PubMed
Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001;125:279–284. PubMed
Bergsland N., Horakova D., Dwyer M.G., Dolezal O., Seidl Z.K., Vaneckova M., Krasensky J., Havrdova E., Zivadinov R. Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am. J. Neuroradiol. 2012;33:1573–1578. PubMed PMC
Bergsland N., Zivadinov R., Dwyer M.G., Weinstock-Guttman B., Benedict R.H. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult. Scler. 2016;22:1327–1336. PubMed
Bonavita S., Sacco R., Esposito S., d'Ambrosio A., Della Corte M., Corbo D., Docimo R., Gallo A., Lavorgna L., Cirillo M., Bisecco A., Esposito F., Tedeschi G. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur. J. Neurol. 2017;24:27–36. PubMed
Caneda M.A., Vecino M.C. The correlation between EDSS and cognitive impairment in MS patients. Assessment of a Brazilian population using a BICAMS version. Arq. Neuropsiquiatr. 2016;74:974–981. PubMed
Ciarochi J.A., Calhoun V.D., Lourens S., Long J.D., Johnson H.J., Bockholt H.J., Liu J., Plis S.M., Paulsen J.S., Turner J.A., Investigators, P-H, Coordinators of the Huntington Study, G Patterns of co-occurring gray matter concentration loss across the Huntington disease prodrome. Front. Neurol. 2016;7:147. PubMed PMC
Coppen E.M., van der Grond J., Hafkemeijer A., Rombouts S.A., Roos R.A. Early grey matter changes in structural covariance networks in Huntington's disease. Neuroimage Clin. 2016;12:806–814. PubMed PMC
Dalton C.M., Chard D.T., Davies G.R., Miszkiel K.A., Altmann D.R., Fernando K., Plant G.T., Thompson A.J., Miller D.H. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain. 2004;127:1101–1107. PubMed
De Stefano N., Stromillo M.L., Giorgio A., Bartolozzi M.L., Battaglini M., Baldini M., Portaccio E., Amato M.P., Sormani M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2016;87:93–99. PubMed PMC
Deloire M., Ruet A., Hamel D., Bonnet M., Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult. Scler. 2010;16:581–587. PubMed
Dwyer M.G., Bergsland N., Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. NeuroImage. 2014;90:207–217. PubMed
Eshaghi A., Bodini B., Ridgway G.R., Garcia-Lorenzo D., Tozer D.J., Sahraian M.A., Thompson A.J., Ciccarelli O. Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis. NeuroImage. 2014;86:257–264. PubMed PMC
Filippi M., Preziosa P., Copetti M., Riccitelli G., Horsfield M.A., Martinelli V., Comi G., Rocca M.A. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology. 2013;81:1759–1767. PubMed
Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., Matthews P.M., Beckmann C.F., Mackay C.E. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U. S. A. 2009;106:7209–7214. PubMed PMC
Fisher E., Lee J.C., Nakamura K., Rudick R.A. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 2008;64:255–265. PubMed
Gelineau-Morel R., Tomassini V., Jenkinson M., Johansen-Berg H., Matthews P.M., Palace J. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum. Brain Mapp. 2012;33:2802–2814. PubMed PMC
Geurts J.J., Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol. 2008;7:841–851. PubMed
Hafkemeijer A., Altmann-Schneider I., de Craen A.J., Slagboom P.E., van der Grond J., Rombouts S.A. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell. 2014;13:1068–1074. PubMed PMC
Havrdova E., Zivadinov R., Krasensky J., Dwyer M.G., Novakova I., Dolezal O., Ticha V., Dusek L., Houzvickova E., Cox J.L., Bergsland N., Hussein S., Svobodnik A., Seidl Z., Vaneckova M., Horakova D. Randomized study of interferon beta-1a, low-dose azathioprine, and low-dose corticosteroids in multiple sclerosis. Mult. Scler. 2009;15:965–976. PubMed
Himberg J., Hyvarinen A., Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage. 2004;22:1214–1222. PubMed
Hofstetter L., Naegelin Y., Filli L., Kuster P., Traud S., Smieskova R., Mueller-Lenke N., Kappos L., Gass A., Sprenger T., Penner I.K., Nichols T.E., Vrenken H., Barkhof F., Polman C., Radue E.W., Borgwardt S.J., Bendfeldt K. Progression in disability and regional grey matter atrophy in relapsing-remitting multiple sclerosis. Mult. Scler. 2014;20:202–213. PubMed PMC
Jacobsen C., Hagemeier J., Myhr K.M., Nyland H., Lode K., Bergsland N., Ramasamy D.P., Dalaker T.O., Larsen J.P., Farbu E., Zivadinov R. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry. 2014;85:1109–1115. PubMed
Kasparek T., Marecek R., Schwarz D., Prikryl R., Vanicek J., Mikl M., Ceskova E. Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum. Brain Mapp. 2010;31:300–310. PubMed PMC
Klein A., Andersson J., Ardekani B.A., Ashburner J., Avants B., Chiang M.C., Christensen G.E., Collins D.L., Gee J., Hellier P., Song J.H., Jenkinson M., Lepage C., Rueckert D., Thompson P., Vercauteren T., Woods R.P., Mann J.J., Parsey R.V. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage. 2009;46:786–802. PubMed PMC
Moccia M., Lanzillo R., Palladino R., Chang K.C., Costabile T., Russo C., De Rosa A., Carotenuto A., Sacca F., Maniscalco G.T., Brescia Morra V. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult. Scler. 2016;22:659–667. PubMed
Patenaude B., Smith S.M., Kennedy D.N., Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56:907–922. PubMed PMC
Pitteri M., Romualdi C., Magliozzi R., Monaco S., Calabrese M. Cognitive impairment predicts disability progression and cortical thinning in MS: an 8-year study. Mult. Scler. 2017;23:848–854. PubMed
Popescu V., Agosta F., Hulst H.E., Sluimer I.C., Knol D.L., Sormani M.P., Enzinger C., Ropele S., Alonso J., Sastre-Garriga J., Rovira A., Montalban X., Bodini B., Ciccarelli O., Khaleeli Z., Chard D.T., Matthews L., Palace J., Giorgio A., De Stefano N., Eisele P., Gass A., Polman C.H., Uitdehaag B.M., Messina M.J., Comi G., Filippi M., Barkhof F., Vrenken H., Group, M.S. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2013;84:1082–1091. PubMed
Poser C.M., Paty D.W., Scheinberg L., McDonald W.I., Davis F.A., Ebers G.C., Johnson K.P., Sibley W.A., Silberberg D.H., Tourtellotte W.W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 1983;13:227–231. PubMed
Rudko D.A., Derakhshan M., Maranzano J., Nakamura K., Arnold D.L., Narayanan S. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging. Neuroimage Clin. 2016;12:858–868. PubMed PMC
Sepulcre J., Goni J., Masdeu J.C., Bejarano B., Velez de Mendizabal N., Toledo J.B., Villoslada P. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch. Neurol. 2009;66:173–179. PubMed
Smith S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002;17:143–155. PubMed PMC
Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44:83–98. PubMed
Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., De Stefano N. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17:479–489. PubMed
Steenwijk M.D., Geurts J.J., Daams M., Tijms B.M., Wink A.M., Balk L.J., Tewarie P.K., Uitdehaag B.M., Barkhof F., Vrenken H., Pouwels P.J. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016;139:115–126. PubMed
Uher T., Vaneckova M., Sormani M.P., Krasensky J., Sobisek L., Dusankova J.B., Seidl Z., Havrdova E., Kalincik T., Benedict R.H., Horakova D. Identification of multiple sclerosis patients at highest risk of cognitive impairment using an integrated brain magnetic resonance imaging assessment approach. Eur. J. Neurol. 2017;24:292–301. PubMed
Xu L., Groth K.M., Pearlson G., Schretlen D.J., Calhoun V.D. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum. Brain Mapp. 2009;30:711–724. PubMed PMC
Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 2001;20:45–57. PubMed
Zivadinov R., Havrdova E., Bergsland N., Tyblova M., Hagemeier J., Seidl Z., Dwyer M.G., Vaneckova M., Krasensky J., Carl E., Kalincik T., Horakova D. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268:831–841. PubMed
Zivadinov R., Uher T., Hagemeier J., Vaneckova M., Ramasamy D.P., Tyblova M., Bergsland N., Seidl Z., Dwyer M.G., Krasensky J., Havrdova E., Horakova D. A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult. Scler. 2016;22:1709–1718. PubMed
Zivadinov R., Ramasamy D.P., Vaneckova M., Gandhi S., Chandra A., Hagemeier J., Bergsland N., Polak P., Benedict R.H., Hojnacki D., Weinstock-Guttman B. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 2017 Sep;23(10):1336–1345. (1352458516678083) PubMed