Ocrelizumab in Early-Stage Relapsing-Remitting Multiple Sclerosis: The Phase IIIb ENSEMBLE 4-Year, Single-Arm, Open-Label Trial

. 2024 Dec 24 ; 103 (12) : e210049. [epub] 20241203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, klinické zkoušky, fáze III, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39626127

BACKGROUND AND OBJECTIVES: Early treatment of multiple sclerosis (MS) reduces disease activity and the risk of long-term disease progression. Effectiveness of ocrelizumab is established in relapsing MS (RMS); however, data in early RMS are lacking. We evaluated the 4-year effectiveness and safety of ocrelizumab as a first-line therapy in treatment-naive patients with recently diagnosed relapsing-remitting MS (RRMS). METHODS: ENSEMBLE was a prospective, 4-year, international, multicenter, single-arm, open-label, phase IIIb study. Patients were treatment naive, aged 18-55 years, had early-stage RRMS with a disease duration ≤3 years, Expanded Disability Status Scale (EDSS) score ≤3.5, and ≥1 clinically reported relapse(s) or ≥1 signs of brain inflammatory activity on MRI in the prior 12 months. Patients received IV ocrelizumab 600 mg every 24 weeks. Effectiveness endpoints over 192 weeks were proportion of patients with no evidence of disease activity (NEDA-3; defined as absence of relapses, 24-week confirmed disability progression [CDP], and MRI measures, with prespecified MRI rebaselining at week 8), 24-week/48-week CDP and 24-week confirmed disability improvement, annualized relapse rate (ARR), mean change in EDSS score from baseline, and safety. Cognitive status, patient-reported outcomes, and serum neurofilament light chain (NfL) were assessed. Descriptive analysis was performed on the intention-to-treat population. RESULTS: Baseline characteristics (N = 678) were consistent with early-stage RRMS (n = 539 patients, 64.6% female, age 40 years and younger; median age: 31.0 years; duration since: MS symptom onset 0.78 years, RRMS diagnosis 0.24 years; mean baseline EDSS score [SD] 1.71 [0.95]). At week 192, most of the patients had NEDA-3 (n = 394/593, 66.4%), 85.0% had no MRI activity, 90.9% had no relapses, and 81.8% had no 24-week CDP over the study duration. Adjusted ARR at week 192 was low (0.020, 95% CI 0.015-0.027). NfL levels were reduced to and remained within the healthy donor range, by week 48 and week 192, respectively. No new or unexpected safety signals were observed. DISCUSSION: Disease activity based on clinical and MRI measures was absent in most of the patients treated with ocrelizumab over 4 years in the ENSEMBLE study. Safety was consistent with the known profile of ocrelizumab. Although this single-arm study was limited by lack of a parallel group for comparison of outcome measures, the positive benefit-risk profile observed may provide confidence to adopt ocrelizumab as a first-line treatment in newly diagnosed patients with early RMS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that adult patients with early-stage MS who were treatment naive maintained low disease activity (NEDA-3) over 4 years with ocrelizumab treatment; no new safety signals were detected. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier NCT03085810; first submitted March 16, 2017; first patient enrolled: March 27, 2017; available at clinicaltrials.gov/ct2/show/NCT03085810.

Zobrazit více v PubMed

Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. 2003;61(11):1528-1532. doi:10.1212/01.wnl.0000096175.39831.21 PubMed DOI

Kappos L, Moeri D, Radue EW, et al. . Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet. 1999;353(9157):964-969. doi:10.1016/s0140-6736(98)03053-0 PubMed DOI

Lublin FD, Haring DA, Ganjgahi H, et al. . How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147-3161. doi:10.1093/brain/awac016 PubMed DOI PMC

Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278-285. doi:10.1056/NEJM199801293380502 PubMed DOI

Filippi M, Bar-Or A, Piehl F, et al. . Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. doi:10.1038/s41572-018-0041-4 PubMed DOI

Bergsland N, Horakova D, Dwyer MG, et al. . Gray matter atrophy patterns in multiple sclerosis: a 10-year source-based morphometry study. Neuroimage Clin. 2018;17:444-451. doi:10.1016/j.nicl.2017.11.002 PubMed DOI PMC

Ziemssen T, De Stefano N, Sormani MP, Van Wijmeersch B, Wiendl H, Kieseier BC. Optimizing therapy early in multiple sclerosis: an evidence-based view. Mult Scler Relat Disord. 2015;4(5):460-469. doi:10.1016/j.msard.2015.07.007 PubMed DOI

Kuhlmann T, Moccia M, Coetzee T, et al. . Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. doi:10.1016/S1474-4422(22)00289-7 PubMed DOI PMC

Cree BAC, Hollenbach JA, Bove R, et al. . Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85(5):653-666. doi:10.1002/ana.25463 PubMed DOI PMC

Cohen JA, Coles AJ, Arnold DL, et al. . Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819-1828. doi:10.1016/S0140-6736(12)61769-3 PubMed DOI

Brown JWL, Coles A, Horakova D, et al. . Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321(2):175-187. doi:10.1001/jama.2018.20588 PubMed DOI PMC

Harding K, Williams O, Willis M, et al. . Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. 2019;76(5):536-541. doi:10.1001/jamaneurol.2018.4905 PubMed DOI PMC

He A, Merkel B, Brown JWL, et al. . Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 2020;19(4):307-316. doi:10.1016/S1474-4422(20)30067-3 PubMed DOI

Buron MD, Chalmer TA, Sellebjerg F, et al. . Initial high-efficacy disease-modifying therapy in multiple sclerosis. Neurology. 2020;95(8):e1041-e1051. doi:10.1212/WNL.0000000000010135 PubMed DOI

Prosperini L, Mancinelli CR, Solaro CM, et al. . Induction versus escalation in multiple sclerosis: a 10-year real world study. Neurotherapeutics. 2020;17(3):994-1004. doi:10.1007/s13311-020-00847-0 PubMed DOI PMC

Spelman T, Magyari M, Piehl F, et al. . Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing-remitting multiple sclerosis: data from 2 different national strategies. JAMA Neurol. 2021;78(10):1197-1204. doi:10.1001/jamaneurol.2021.2738 PubMed DOI PMC

Cree BAC, Hartung HP, Barnett M. New drugs for multiple sclerosis, new treatment algorithms. Curr Opin Neurol. 2022;35(3):262-270. doi:10.1097/WCO.0000000000001063 PubMed DOI

Hartung HP, Meuth SG, Thompson AJ. Paradigm shifts: early initiation of high efficacy disease-modifying treatment in multiple sclerosis. Mult Scler. 2021;27(10):1473-1476. doi:10.1177/13524585211033190 PubMed DOI

Ontaneda D, Tallantyre E, Kalincik T, Planchon SM, Evangelou N. Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis. Lancet Neurol. 2019;18(10):973-980. doi:10.1016/S1474-4422(19)30151-6 PubMed DOI

Simpson A, Mowry EM, Newsome SD. Early aggressive treatment approaches for multiple sclerosis. Curr Treat Options Neurol. 2021;23(7):19. doi:10.1007/s11940-021-00677-1 PubMed DOI PMC

Freeman L, Longbrake EE, Coyle PK, Hendin B, Vollmer T. High-efficacy therapies for treatment-naïve individuals with relapsing-remitting multiple sclerosis. CNS Drugs. 2022;36(12):1285-1299. doi:10.1007/s40263-022-00965-7 PubMed DOI PMC

Filippi M, Amato MP, Centonze D, et al. . Early use of high-efficacy disease-modifying therapies makes the difference in people with multiple sclerosis: an expert opinion. J Neurol. 2022;269(10):5382-5394. doi:10.1007/s00415-022-11193-w PubMed DOI PMC

Wiendl H, Gold R, Berger T, et al. . Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 2021;14:17562864211039648. doi:10.1177/17562864211039648 PubMed DOI PMC

Costello K and Kalb R. The Use of Disease-Modifying Therapies in Multiple Sclerosis: Principles and Current Evidence. A Consensus Paper by the MS Coalition. 2019. Accessed November 4, 2024. https://ms-coalition.org/wp-content/uploads/2019/03/dmt_consensus_ms_coalition032019.pdf.

Rae-Grant A, Day GS, Marrie RA, et al. . Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(17):777-788. doi:10.1212/WNL.0000000000005347 PubMed DOI

Montalban X, Gold R, Thompson AJ, et al. . ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96-120. doi:10.1177/1352458517751049 PubMed DOI

Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. 2015;4:329-333. doi:10.1016/j.msard.2015.04.006 PubMed DOI

Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015;72(2):152-158. doi:10.1001/jamaneurol.2014.3537 PubMed DOI

Havrdová E, Arnold DL, Bar-Or A, et al. . No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult Scler J Exp Transl Clin. 2018;4(1):2055217318760642. doi:10.1177/2055217318760642 PubMed DOI PMC

OCREVUS (ocrelizumab): Prescribing Information. Genentech, Inc.; 2022. Accessed February 6, 2023. gene.com/download/pdf/ocrevus_prescribing.pdf.

OCREVUS (ocrelizumab): Summary of Product Characteristics. Roche Pharma AG. Accessed February 6, 2023. ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf.

Hauser SL, Bar-Or A, Comi G, et al. . Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234. doi:10.1056/NEJMoa1601277 PubMed DOI

Montalban X, Hauser SL, Kappos L, et al. . Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209-220. doi:10.1056/NEJMoa1606468 PubMed DOI

Hauser SL, Kappos L, Arnold DL, et al. . Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology. 2020;95(13):e1854-e1867. doi:10.1212/WNL.0000000000010376 PubMed DOI PMC

Wolinsky JS, Arnold DL, Brochet B, et al. . Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2020;19(12):998-1009. doi:10.1016/S1474-4422(20)30342-2 PubMed DOI

Havrdová E, Hauser SL, Honeycutt WD, et al. . No evidence of disease activity on ocrelizumab treatment in patients with early relapsing multiple sclerosis: pooled analysis of the phase III OPERA studies. Presented at the 69th American Academy of Neurology (AAN) Annual Meeting; April 22-28, 2017; Boston, MA; Poster P391.

Vermersch P, Oreja-Guevara C, Siva A, et al. . Efficacy and safety of ocrelizumab in patients with relapsing-remitting multiple sclerosis with suboptimal response to prior disease-modifying therapies: a primary analysis from the phase 3b CASTING single-arm, open-label trial. Eur J Neurol. 2022;29(3):790-801. doi:10.1111/ene.15171 PubMed DOI PMC

Polman CH, Reingold SC, Banwell B, et al. . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302. doi:10.1002/ana.22366 PubMed DOI PMC

Cadavid D, Cohen JA, Freedman MS, et al. . The EDSS-Plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult Scler. 2017;23(1):94-105. doi:10.1177/1352458516638941 PubMed DOI

Smith SM, Zhang Y, Jenkinson M, et al. . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17(1):479-489. doi:10.1006/nimg.2002.1040 PubMed DOI

Benedict R, Amato MP, Boringa J, et al. . Brief International Cognitive Assessment for MS (BICAMS): international standards for validation. BMC Neurol. 2012;12:55. doi:10.1186/1471-2377-12-55 PubMed DOI PMC

Harp C, Thanei GA, Jia X, et al. . Development of an age-adjusted model for blood neurofilament light chain. Ann Clin Transl Neurol. 2022;9(4):444-453. doi:10.1002/acn3.51524 PubMed DOI PMC

Data availability: clinical study data request platform. Accessed May 21, 2024. vivli.org/ourmember/roche/.

Benedict RHB, DeLuca J, Phillips G, et al. ; Multiple Sclerosis Outcome Assessments Consortium . Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler. 2017;23(5):721-733. doi:10.1177/1352458517690821 PubMed DOI PMC

Huijbregts SC, Kalkers NF, de Sonneville LM, de Groot V, Reuling IEW, Polman CH. Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology. 2004;63(2):335-339. doi:10.1212/01.wnl.0000129828.03714.90 PubMed DOI

Kappos L, Polman CH, Freedman MS, et al. . Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2006;67(7):1242-1249. doi:10.1212/01.wnl.0000237641.33768.8d PubMed DOI

Comi G, Martinelli V, Rodegher M, et al. . Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9700):1503-1511. doi:10.1016/S0140-6736(09)61259-9 PubMed DOI

Filippi M, Danesi R, Derfuss T, et al. . Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis. J Neurol. 2022;269(3):1670-1677. doi:10.1007/s00415-021-10836-8 PubMed DOI PMC

Cerqueira J, Berthele A, Cree BAC, et al. . Efficacy and safety of ocrelizumab in a treatment-naive, early RMS population: data over 7 years from the OPERA OLE trials. Platform presentation number OPR-135, presented at the 8th European Academy of Neurology (EAN) 2022; June 25-28, 2022; Vienna, Austria and Virtual.

See eReferences for additional references e1-e14.

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03085810

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...