• This record comes from PubMed

Association of Initial Disease-Modifying Therapy With Later Conversion to Secondary Progressive Multiple Sclerosis

. 2019 Jan 15 ; 321 (2) : 175-187.

Language English Country United States Media print

Document type Comparative Study, Journal Article, Multicenter Study, Observational Study, Research Support, Non-U.S. Gov't

Grant support
MR/L010305/1 Medical Research Council - United Kingdom

IMPORTANCE: Within 2 decades of onset, 80% of untreated patients with relapsing-remitting multiple sclerosis (MS) convert to a phase of irreversible disability accrual termed secondary progressive MS. The association between disease-modifying treatments (DMTs), and this conversion has rarely been studied and never using a validated definition. OBJECTIVE: To determine the association between the use, the type of, and the timing of DMTs with the risk of conversion to secondary progressive MS diagnosed with a validated definition. DESIGN, SETTING, AND PARTICIPANTS: Cohort study with prospective data from 68 neurology centers in 21 countries examining patients with relapsing-remitting MS commencing DMTs (or clinical monitoring) between 1988-2012 with minimum 4 years' follow-up. EXPOSURES: The use, type, and timing of the following DMTs: interferon beta, glatiramer acetate, fingolimod, natalizumab, or alemtuzumab. After propensity-score matching, 1555 patients were included (last follow-up, February 14, 2017). MAIN OUTCOME AND MEASURE: Conversion to objectively defined secondary progressive MS. RESULTS: Of the 1555 patients, 1123 were female (mean baseline age, 35 years [SD, 10]). Patients initially treated with glatiramer acetate or interferon beta had a lower hazard of conversion to secondary progressive MS than matched untreated patients (HR, 0.71; 95% CI, 0.61-0.81; P < .001; 5-year absolute risk, 12% [49 of 407] vs 27% [58 of 213]; median follow-up, 7.6 years [IQR, 5.8-9.6]), as did fingolimod (HR, 0.37; 95% CI, 0.22-0.62; P < .001; 5-year absolute risk, 7% [6 of 85] vs 32% [56 of 174]; median follow-up, 4.5 years [IQR, 4.3-5.1]); natalizumab (HR, 0.61; 95% CI, 0.43-0.86; P = .005; 5-year absolute risk, 19% [16 of 82] vs 38% [62 of 164]; median follow-up, 4.9 years [IQR, 4.4-5.8]); and alemtuzumab (HR, 0.52; 95% CI, 0.32-0.85; P = .009; 5-year absolute risk, 10% [4 of 44] vs 25% [23 of 92]; median follow-up, 7.4 years [IQR, 6.0-8.6]). Initial treatment with fingolimod, alemtuzumab, or natalizumab was associated with a lower risk of conversion than initial treatment with glatiramer acetate or interferon beta (HR, 0.66; 95% CI, 0.44-0.99; P = .046); 5-year absolute risk, 7% [16 of 235] vs 12% [46 of 380]; median follow-up, 5.8 years [IQR, 4.7-8.0]). The probability of conversion was lower when glatiramer acetate or interferon beta was started within 5 years of disease onset vs later (HR, 0.77; 95% CI, 0.61-0.98; P = .03; 5-year absolute risk, 3% [4 of 120] vs 6% [2 of 38]; median follow-up, 13.4 years [IQR, 11-18.1]). When glatiramer acetate or interferon beta were escalated to fingolimod, alemtuzumab, or natalizumab within 5 years vs later, the HR was 0.76 (95% CI, 0.66-0.88; P < .001; 5-year absolute risk, 8% [25 of 307] vs 14% [46 of 331], median follow-up, 5.3 years [IQR], 4.6-6.1). CONCLUSIONS AND RELEVANCE: Among patients with relapsing-remitting MS, initial treatment with fingolimod, alemtuzumab, or natalizumab was associated with a lower risk of conversion to secondary progressive MS vs initial treatment with glatiramer acetate or interferon beta. These findings, considered along with these therapies' risks, may help inform decisions about DMT selection.

Abertawe Bro Morgannwg University Local Health Board Swansea United Kingdom

Amiri Hospital Qurtoba Kuwait City Kuwait

Asaf Harofen Medical Center Beer Yaakov Zerifin Israel

Center of Clinical Neuroscience Department of Neurology MS Center Dresden Dresden Germany

Charles University Prague Katerinska Czech Republic

CHUM and Universite de Montreal Montreal Canada

CISSS Chaudi're Appalache Centre Hospitalier Levis Canada

Clinical Outcomes Research Unit Melbourne Brain Centre University of Melbourne Melbourne Australia

Cliniques Universitaires Saint Luc Université Catholique de Louvain Brussels Belgium

Department of Basic Medical Sciences Neuroscience and Sense Organs University of Bari Bari Italy

Department of Biomedical and Neuromotor Sciences University of Bologna and IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna Italy

Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom

Department of Medicine University of Melbourne Melbourne Australia

Department of Neurology and Center of Clinical Neuroscience General University Hospital Prague Czech Republic

Department of Neurology Box Hill Hospital Monash University Melbourne Australia

Department of Neurology Institute of Psychological Medicine and Clinical Neuroscience Cardiff University University Hospital of Wales Cardiff United Kingdom

Department of Neurology John Hunter Hospital Hunter New England Health Newcastle Australia

Department of Neurology Royal Melbourne Hospital Melbourne Australia

Department of Neurology Southmead Hospital and Clinical Neurosciences University of Bristol Bristol United Kingdom

Department of Neuroscience Azienda Ospedaliera Universitaria Modena Italy

Flinders University Adelaide Australia

Hopital Notre Dame Montreal Canada

Hospital Universitario Virgen Macarena Sevilla Spain

Institute for Psychological Medicine and Clinical Neurosciences Cardiff University Wales

IRCCS Mondino Foundation Pavia Italy

Isfahan University of Medical Sciences Isfahan Iran

Medical Faculty Ondokuz Mayis University Kurupelit Turkey

Neuro Rive Sud Greenfield Park Quebec Canada

NMR Research Unit Queen Square Multiple Sclerosis Centre University College London Institute of Neurology London United Kingdom

School of Medicine and Medical Sciences University College Dublin St Vincent's University Hospital Dublin Ireland

School of Medicine and Public Health University Newcastle Australia

University of Parma Parma Italy

University of Queensland Brisbane Australia; Royal Brisbane and Women's Hospital

UOC Neurologia Azienda Sanitaria Unica Regionale Marche Macerata Italy

Zuyderland Medical Center Sittard Geleen the Netherlands

Comment In

PubMed

Erratum In

PubMed

See more in PubMed

The IFNB Multiple Sclerosis Study Group . Interferon beta-1b is effective in relapsing-remitting multiple sclerosis, I: clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):655-661. doi:10.1212/WNL.43.4.655 PubMed DOI

Comi G, Filippi M, Wolinsky JS; European/Canadian Glatiramer Acetate Study Group . European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging—measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol. 2001;49(3):290-297. doi:10.1002/ana.64 PubMed DOI

Polman CH, O’Connor PW, Havrdova E, et al. ; AFFIRM Investigators . A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899-910. doi:10.1056/NEJMoa044397 PubMed DOI

Cohen JA, Barkhof F, Comi G, et al. ; TRANSFORMS Study Group . Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402-415. doi:10.1056/NEJMoa0907839 PubMed DOI

Coles AJ, Compston DA, Selmaj KW, et al. ; CAMMS223 Trial Investigators . Alemtuzumab vs interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786-1801. doi:10.1056/NEJMoa0802670 PubMed DOI

Weinshenker BG, Bass B, Rice GP, et al. . The natural history of multiple sclerosis: a geographically based study, I: clinical course and disability. Brain. 1989;112(Pt 1):133-146. doi:10.1093/brain/112.1.133 PubMed DOI

Ebers GC, Traboulsee A, Li D, et al. ; Investigators of the 16-year Long-Term Follow-Up Study . Analysis of clinical outcomes according to original treatment groups 16 years after the pivotal IFNB-1b trial. J Neurol Neurosurg Psychiatry. 2010;81(8):907-912. doi:10.1136/jnnp.2009.204123 PubMed DOI

Bergamaschi R, Quaglini S, Tavazzi E, et al. . Immunomodulatory therapies delay disease progression in multiple sclerosis. Mult Scler. 2016;22(13):1732-1740. doi:10.1177/1352458512445941 PubMed DOI

Goodin DS, Jones J, Li D, et al. ; 16-Year Long-Term Follow-up Study Investigators . Establishing long-term efficacy in chronic disease: use of recursive partitioning and propensity score adjustment to estimate outcome in MS. PLoS One. 2011;6(11):e22444. doi:10.1371/journal.pone.0022444 PubMed DOI PMC

Tedeholm H, Lycke J, Skoog B, et al. . Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs. Mult Scler. 2013;19(6):765-774. doi:10.1177/1352458512463764 PubMed DOI PMC

Trojano M, Pellegrini F, Fuiani A, et al. . New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol. 2007;61(4):300-306. doi:10.1002/ana.21102 PubMed DOI

Patrucco L, Rojas JI, Cristiano E. [Long term effect of interferon-beta on disease severity in relapsing-remitting multiple sclerosis patients]. Rev Neurol. 2010;50(9):529-532. PubMed

Drulovic J, Kostic J, Mesaros S, et al. . Interferon-beta and disability progression in relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2013;115(suppl 1):S65-S69. doi:10.1016/j.clineuro.2013.09.024 PubMed DOI

Zhang T, Shirani A, Zhao Y, et al. ; BC MS Clinic Neurologists . Beta-interferon exposure and onset of secondary progressive multiple sclerosis. Eur J Neurol. 2015;22(6):990-1000. doi:10.1111/ene.12698 PubMed DOI PMC

Lorscheider J, Buzzard K, Jokubaitis V, et al. ; MSBase Study Group . Defining secondary progressive multiple sclerosis. Brain. 2016;139(Pt 9):2395-2405. doi:10.1093/brain/aww173 PubMed DOI

Swingler RJ, Compston DA. The prevalence of multiple sclerosis in south east Wales. J Neurol Neurosurg Psychiatry. 1988;51(12):1520-1524. doi:10.1136/jnnp.51.12.1520 PubMed DOI PMC

Ingram G, Colley E, Ben-Shlomo Y, et al. . Validity of patient-derived disability and clinical data in multiple sclerosis. Mult Scler. 2010;16(4):472-479. doi:10.1177/1352458509358902 PubMed DOI

Kalincik T, Brown JWL, Robertson N, et al. ; MSBase Study Group . Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 2017;16(4):271-281. doi:10.1016/S1474-4422(17)30007-8 PubMed DOI

Poser CM, Paty DW, Scheinberg L, et al. . New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227-231. doi:10.1002/ana.410130302 PubMed DOI

Butzkueven H, Chapman J, Cristiano E, et al. . MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler. 2006;12(6):769-774. doi:10.1177/1352458506070775 PubMed DOI

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. doi:10.1212/WNL.33.11.1444 PubMed DOI

Freedman MS, Selchen D, Arnold DL, et al. ; Canadian Multiple Sclerosis Working Group . Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci. 2013;40(3):307-323. doi:10.1017/S0317167100014244 PubMed DOI

He A, Spelman T, Jokubaitis V, et al. ; MSBase Study Group . Comparison of switch to fingolimod or interferon beta/glatiramer acetate in active multiple sclerosis. JAMA Neurol. 2015;72(4):405-413. doi:10.1001/jamaneurol.2014.4147 PubMed DOI

Hill-Cawthorne GA, Button T, Tuohy O, et al. . Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(3):298-304. doi:10.1136/jnnp-2011-300826 PubMed DOI

Willis MD, Harding KE, Pickersgill TP, et al. . Alemtuzumab for multiple sclerosis: Long term follow-up in a multi-centre cohort. Mult Scler. 2016;22(9):1215-1223. doi:10.1177/1352458515614092 PubMed DOI

Spelman T, Kalincik T, Jokubaitis V, et al. . Comparative efficacy of first-line natalizumab vs IFN-β or glatiramer acetate in relapsing MS. Neurol Clin Pract. 2016;6(2):102-115. doi:10.1212/CPJ.0000000000000227 PubMed DOI PMC

Ho DEIK, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal. 2007;15:199-236. doi:10.1093/pan/mpl013 DOI

Rassen JA, Shelat AA, Myers J, Glynn RJ, Rothman KJ, Schneeweiss S. One-to-many propensity score matching in cohort studies. Pharmacoepidemiol Drug Saf. 2012;21(suppl 2):69-80. doi:10.1002/pds.3263 PubMed DOI

Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150-161. doi:10.1002/pst.433 PubMed DOI PMC

Austin PC, Stuart EA. The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res. 2015. PubMed PMC

Lunt M. Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching. Am J Epidemiol. 2014;179(2):226-235. doi:10.1093/aje/kwt212 PubMed DOI PMC

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.

Schoenfeld D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika. 1980;67(1):145-153. doi:10.1093/biomet/67.1.145 DOI

Signori A, Gallo F, Bovis F, Di Tullio N, Maietta I, Sormani MP. Long-term impact of interferon or Glatiramer acetate in multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2016;6:57-63. doi:10.1016/j.msard.2016.01.007 PubMed DOI

Suissa S. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol. 2008;167(4):492-499. doi:10.1093/aje/kwm324 PubMed DOI

Dehejia RHWS. Causal effects in nonexperimental studies: Re-evaluating the evaluation of training programs. J Am Stat Assoc. 1999;94:1053-1062. doi:10.1080/01621459.1999.10473858 DOI

Sormani MP, Tintorè M, Rovaris M, et al. . Will Rogers phenomenon in multiple sclerosis. Ann Neurol. 2008;64(4):428-433. doi:10.1002/ana.21464 PubMed DOI

Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58. doi:10.1186/1471-2377-14-58 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Treatment De-escalation in Relapsing-Remitting Multiple Sclerosis: An Observational Study

. 2025 Apr ; 39 (4) : 403-416. [epub] 20250214

Ocrelizumab in Early-Stage Relapsing-Remitting Multiple Sclerosis: The Phase IIIb ENSEMBLE 4-Year, Single-Arm, Open-Label Trial

. 2024 Dec 24 ; 103 (12) : e210049. [epub] 20241203

Multiple sclerosis: emerging epidemiological trends and redefining the clinical course

. 2024 Sep ; 44 () : 100977. [epub] 20240822

The Czech National MS Registry (ReMuS): Data trends in multiple sclerosis patients whose first disease-modifying therapies were initiated from 2013 to 2021

. 2024 Sep ; 168 (3) : 262-270. [epub] 20230428

Comparative Effectiveness of Natalizumab, Fingolimod, and Injectable Therapies in Pediatric-Onset Multiple Sclerosis: A Registry-Based Study

. 2024 Apr 09 ; 102 (7) : e208114. [epub] 20240306

Long-term clinical outcomes in patients with multiple sclerosis who are initiating disease-modifying therapy with natalizumab compared with BRACETD first-line therapies

. 2024 ; 17 () : 17562864231221331. [epub] 20240226

Diagnostic delay of multiple sclerosis: prevalence, determinants and consequences

Variability of the response to immunotherapy among subgroups of patients with multiple sclerosis

. 2023 Apr ; 30 (4) : 1014-1024. [epub] 20230216

Comparative effectiveness of cladribine tablets versus other oral disease-modifying treatments for multiple sclerosis: Results from MSBase registry

. 2023 Feb ; 29 (2) : 221-235. [epub] 20221126

Confirmed disability progression as a marker of permanent disability in multiple sclerosis

. 2022 Aug ; 29 (8) : 2321-2334. [epub] 20220609

The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis

. 2022 Jul ; 269 (7) : 3937-3958. [epub] 20220411

Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis

. 2022 Mar ; 269 (3) : 1670-1677. [epub] 20211009

Relapse-independent multiple sclerosis progression under natalizumab

. 2021 ; 3 (4) : fcab229. [epub] 20211009

Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis

. 2021 May ; 8 (3) : . [epub] 20210316

Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study: A Randomized Clinical Trial

. 2021 May 01 ; 78 (5) : 558-567.

Efficacy and safety of alemtuzumab over 6 years: final results of the 4-year CARE-MS extension trial

. 2021 ; 14 () : 1756286420982134. [epub] 20210423

Proportion of alemtuzumab-treated patients converting from relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis over 6 years

. 2020 Oct-Dec ; 6 (4) : 2055217320972137. [epub] 20201218

Factors influencing daily treatment choices in multiple sclerosis: practice guidelines, biomarkers and burden of disease

. 2020 ; 13 () : 1756286420975223. [epub] 20201207

Association of Sustained Immunotherapy With Disability Outcomes in Patients With Active Secondary Progressive Multiple Sclerosis

. 2020 Nov 01 ; 77 (11) : 1398-1407.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...