The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35399125
PubMed Central
PMC8995166
DOI
10.1007/s00415-022-11063-5
PII: 10.1007/s00415-022-11063-5
Knihovny.cz E-zdroje
- Klíčová slova
- Autologous haematopoietic stem cell transplant, Immune reconstitution, Multiple sclerosis,
- MeSH
- autologní transplantace metody MeSH
- lidé MeSH
- retrospektivní studie MeSH
- roztroušená skleróza * etiologie chirurgie MeSH
- transplantace hematopoetických kmenových buněk * škodlivé účinky MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Autologous haematopoietic stem cell transplantation (aHSCT) is gaining traction as a valuable treatment option for patients affected by severe multiple sclerosis (MS), particularly the relapsing-remitting form. We describe the current literature in terms of clinical trials, observational and retrospective studies, as well as immune reconstitution following transplantation, with a focus on the conditioning regimens used for transplantation. The evidence base predominantly consists of non-randomised, uncontrolled clinical trials or data from retrospective or observational cohorts, i.e. very few randomised or controlled trials. Most often, intermediate-intensity conditioning regimens are used, with promising results from both myeloablative and lymphoablative strategies, as well as from regimens that are low and high intensity. Efficacy of transplantation, which is likely secondary to immune reconstitution and restored immune tolerance, is, therefore, not clearly dependent on the intensity of the conditioning regimen. However, the conditioning regimen may well influence the immune response to transplantation. Heterogeneity of conditioning regimens among studies hinders synthesis of the articles assessing post-aHSCT immune system changes. Factors associated with better outcomes were lower Kurtzke Expanded Disability Status Scale, relapsing-remitting MS, younger age, and shorter disease duration at baseline, which supports the guidance for patient selection proposed by the European Society for Blood and Marrow Transplantation. Interestingly, promising outcomes were described for patients with secondary progressive MS by some studies, which may be worth taking into account when considering treatment options for patients with active, progressive disease. Of note, a significant proportion of patients develop autoimmune disease following transplantation, with alemtuzumab-containing regimens associated with the highest incidence.
Brain and Mind Center University of Sydney Sydney Australia
Department of Medicine University Hospital Münster Albert Schweitzer Campus 1 Münster Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219. doi: 10.1038/nature10251. PubMed DOI PMC
International Multiple Sclerosis Genetics C. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357(9):851–862. doi: 10.1056/NEJMoa073493. PubMed DOI
Marrie RA. Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol. 2004;3(12):709–718. doi: 10.1016/S1474-4422(04)00933-0. PubMed DOI
Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–1231. doi: 10.1016/S0140-6736(02)08220-X. PubMed DOI
Guerrero BL, Sicotte NL. Microglia in multiple sclerosis: friend or foe? Front Immunol. 2020;11:374. doi: 10.3389/fimmu.2020.00374. PubMed DOI PMC
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558. doi: 10.1038/nri3871. PubMed DOI
Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14(2):208–223. doi: 10.1016/S1474-4422(14)70264-9. PubMed DOI PMC
Huntemann N, Rolfes L, Pawlitzki M, Ruck T, Pfeuffer S, Wiendl H, et al. Failed, interrupted, or inconclusive trials on neuroprotective and neuroregenerative treatment strategies in multiple sclerosis: update 2015–2020. Drugs. 2021;81(9):1031–1063. doi: 10.1007/s40265-021-01526-w. PubMed DOI PMC
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286. doi: 10.1212/WNL.0000000000000560. PubMed DOI PMC
Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. doi: 10.1038/s41572-018-0041-4. PubMed DOI
Kavrochorianou N, Markogiannaki M, Haralambous S. IFN-beta differentially regulates the function of T cell subsets in MS and EAE. Cytokine Growth Factor Rev. 2016;30:47–54. doi: 10.1016/j.cytogfr.2016.03.013. PubMed DOI
Stinissen P, Raus J, Zhang J. Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol. 1997;17(1):33–75. doi: 10.1615/critrevimmunol.v17.i1.20. PubMed DOI
Martin-Saavedra FM, Gonzalez-Garcia C, Bravo B, Ballester S. Beta interferon restricts the inflammatory potential of CD4+ cells through the boost of the Th2 phenotype, the inhibition of Th17 response and the prevalence of naturally occurring T regulatory cells. Mol Immunol. 2008;45(15):4008–4019. doi: 10.1016/j.molimm.2008.06.006. PubMed DOI
Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, et al. IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun. 2011;25(6):1170–1181. doi: 10.1016/j.bbi.2011.03.007. PubMed DOI
Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989;124(1):132–143. doi: 10.1016/0008-8749(89)90117-2. PubMed DOI
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T helper cells: the modulators of inflammation in multiple sclerosis. Cells. 2020 doi: 10.3390/cells9020482. PubMed DOI PMC
Huseby ES, Huseby PG, Shah S, Smith R, Stadinski BD. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol. 2012;3:64. doi: 10.3389/fimmu.2012.00064. PubMed DOI PMC
Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol. 2008;4(7):384–398. doi: 10.1038/ncpneuro0832. PubMed DOI
Ruck T, Bock S, Pfeuffer S, Schroeter CB, Cengiz D, Marciniak P, et al. K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res. 2022;32(1):72–88. doi: 10.1038/s41422-021-00580-z. PubMed DOI PMC
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, et al. Role of B cells in multiple sclerosis and related disorders. Ann Neurol. 2021;89(1):13–23. doi: 10.1002/ana.25927. PubMed DOI PMC
Bittner S, Ruck T, Wiendl H, Grauer OM, Meuth SG. Targeting B cells in relapsing-remitting multiple sclerosis: from pathophysiology to optimal clinical management. Ther Adv Neurol Disord. 2017;10(1):51–66. doi: 10.1177/1756285616666741. PubMed DOI PMC
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: a review. Immunol Lett. 2020;222:1–11. doi: 10.1016/j.imlet.2020.02.012. PubMed DOI
Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–665. doi: 10.1016/S1474-4422(14)70068-7. PubMed DOI
Khan O, Rieckmann P, Boyko A, Selmaj K, Ashtamker N, Davis MD, et al. Efficacy and safety of a three-times-weekly dosing regimen of glatiramer acetate in relapsing-remitting multiple sclerosis patients: 3-year results of the Glatiramer Acetate Low-Frequency Administration open-label extension study. Mult Scler. 2017;23(6):818–829. doi: 10.1177/1352458516664033. PubMed DOI
Wolinsky JS, Borresen TE, Dietrich DW, Wynn D, Sidi Y, Steinerman JR, et al. GLACIER: an open-label, randomized, multicenter study to assess the safety and tolerability of glatiramer acetate 40 mg three-times weekly versus 20 mg daily in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2015;4(4):370–376. doi: 10.1016/j.msard.2015.06.005. PubMed DOI
Palace J, Duddy M, Lawton M, Bregenzer T, Zhu F, Boggild M, et al. Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: final 10-year results from the UK multiple sclerosis risk-sharing scheme. J Neurol Neurosurg Psychiatry. 2019;90(3):251–260. doi: 10.1136/jnnp-2018-318360. PubMed DOI PMC
Lunemann JD, Ruck T, Muraro PA, Bar-Or A, Wiendl H. Author Correction: Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat Rev Neurol. 2020;16(2):125. doi: 10.1038/s41582-020-0310-1. PubMed DOI
Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019;321(2):175–187. doi: 10.1001/jama.2018.20588. PubMed DOI PMC
Cree BAC, Mares J, Hartung HP. Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm. Curr Opin Neurol. 2019;32(3):365–377. doi: 10.1097/WCO.0000000000000700. PubMed DOI
Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, et al. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. 2019;76(5):536–541. doi: 10.1001/jamaneurol.2018.4905. PubMed DOI PMC
Li H, Hu F, Zhang Y, Li K. Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol. 2020;267(12):3489–3498. doi: 10.1007/s00415-019-09395-w. PubMed DOI
Hartung HP, Meuth SG, Thompson AJ. Paradigm shifts: early initiation of high-efficacy disease-modifying treatment in multiple sclerosis. Mult Scler. 2021;27(10):1473–1476. doi: 10.1177/13524585211033190. PubMed DOI
University of California SFMSET. Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85(5):653–666. doi: 10.1002/ana.25463. PubMed DOI PMC
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 2019;76(12):1474–1483. doi: 10.1001/jamaneurol.2019.2399. PubMed DOI PMC
Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017;13(7):391–405. doi: 10.1038/nrneurol.2017.81. PubMed DOI
Visweswaran M, Hendrawan K, Massey JC, Khoo ML, Ford CD, Zaunders JJ, et al. Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann Clin Transl Neurol. 2022;9(2):206–220. doi: 10.1002/acn3.51510. PubMed DOI PMC
Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ, et al. Milestones of hematopoietic stem cell transplantation—from first human studies to current developments. Front Immunol. 2016 doi: 10.3389/fimmu.2016.00470. PubMed DOI PMC
Sharrack B, Saccardi R, Alexander T, Badoglio M, Burman J, Farge D, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE) Bone Marrow Transplant. 2020;55(2):283–306. doi: 10.1038/s41409-019-0684-0. PubMed DOI PMC
Burt RK, Burns W, Hess A. Bone marrow transplantation for multiple sclerosis. Bone Marrow Transplant. 1995;16(1):1–6. doi: 10.1038/sj.bmt.1703081. PubMed DOI
Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20(8):631–638. doi: 10.1038/sj.bmt.1700944. PubMed DOI
Burt RK, Traynor AE, Cohen B, Karlin KH, Davis FA, Stefoski D, et al. T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. Bone Marrow Transplant. 1998;21(6):537–541. doi: 10.1038/sj.bmt.1701129. PubMed DOI
Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102(7):2364–2372. doi: 10.1182/blood-2002-12-3908. PubMed DOI PMC
Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102(7):2373–2378. doi: 10.1182/blood-2003-03-0877. PubMed DOI
Samijn JP, te Boekhorst PA, Mondria T, van Doorn PA, Flach HZ, van der Meche FG, et al. Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(1):46–50. doi: 10.1136/jnnp.2005.063883. PubMed DOI PMC
Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–585. doi: 10.1016/S0140-6736(16)30169-6. PubMed DOI
Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–852. doi: 10.1212/WNL.0000000000003660. PubMed DOI PMC
Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K, et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(5):514–521. doi: 10.1136/jnnp-2018-319446. PubMed DOI
Shevchenko JL, Kuznetsov AN, Ionova TI, Melnichenko VY, Fedorenko DA, Kartashov AV, et al. Autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis. Exp Hematol. 2012;40(11):892–898. doi: 10.1016/j.exphem.2012.07.003. PubMed DOI
Saiz A, Blanco Y, Carreras E, Berenguer J, Rovira M, Pujol T, et al. Clinical and MRI outcome after autologous hematopoietic stem cell transplantation in MS. Neurology. 2004;62(2):282–284. doi: 10.1212/wnl.62.2.282. PubMed DOI
Saccardi R, Mancardi GL, Solari A, Bosi A, Bruzzi P, Di Bartolomeo P, et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood. 2005;105(6):2601–2607. doi: 10.1182/blood-2004-08-3205. PubMed DOI
Capello E, Saccardi R, Murialdo A, Gualandi F, Pagliai F, Bacigalupo A, et al. Intense immunosuppression followed by autologous stem cell transplantation in severe multiple sclerosis. Neurol Sci. 2005;26(Suppl 4):S200–S203. doi: 10.1007/s10072-005-0514-6. PubMed DOI
Hamerschlak N, Rodrigues M, Moraes DA, Oliveira MC, Stracieri AB, Pieroni F, et al. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant. 2010;45(2):239–248. doi: 10.1038/bmt.2009.127. PubMed DOI
Kozak T, Havrdova E, Pit'ha J, Gregora E, Pytlik R, Maaloufova J, et al. Immunoablative therapy with autologous stem cell transplantation in the treatment of poor risk multiple sclerosis. Transplant Proc. 2001;33(3):2179–2181. doi: 10.1016/s0041-1345(01)01933-9. PubMed DOI
Mancardi GL, Saccardi R, Filippi M, Gualandi F, Murialdo A, Inglese M, et al. Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology. 2001;57(1):62–68. doi: 10.1212/wnl.57.1.62. PubMed DOI
Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–988. doi: 10.1212/WNL.0000000000001329. PubMed DOI
Mariottini A, Innocenti C, Forci B, Magnani E, Mechi C, Barilaro A, et al. Safety and efficacy of autologous hematopoietic stem-cell transplantation following natalizumab discontinuation in aggressive multiple sclerosis. Eur J Neurol. 2019;26(4):624–630. doi: 10.1111/ene.13866. PubMed DOI
Su L, Xu J, Ji BX, Wan SG, Lu CY, Dong HQ, et al. Autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Int J Hematol. 2006;84(3):276–281. doi: 10.1532/IJH97.A10516. PubMed DOI
Xu J, Ji BX, Su L, Dong HQ, Sun XJ, Liu CY. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis. Chin Med J (Engl) 2006;119(22):1851–1855. doi: 10.1097/00029330-200611020-00001. PubMed DOI
Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–253. doi: 10.1016/S1474-4422(09)70017-1. PubMed DOI
Curro D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E, et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. Mult Scler. 2015;21(11):1423–1430. doi: 10.1177/1352458514564484. PubMed DOI
Giedraitiene N, Kizlaitiene R, Peceliunas V, Griskevicius L, Kaubrys G. Selective cognitive dysfunction and physical disability improvement after autologous hematopoietic stem cell transplantation in highly active multiple sclerosis. Sci Rep. 2020;10(1):21286. doi: 10.1038/s41598-020-78160-1. PubMed DOI PMC
Cull G, Hall D, Fabis-Pedrini MJ, Carroll WM, Forster L, Robins F, et al. Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS. Mult Scler J Exp Transl Clin. 2017;3(1):2055217317700167. doi: 10.1177/2055217317700167. PubMed DOI PMC
Dayama A, Bhargava R, Kurmi SR, Jain S, Dua V. Autologous stem cell transplant in adult multiple sclerosis patients: a study from North India. Neurol India. 2020;68(2):454–457. doi: 10.4103/0028-3886.284385. PubMed DOI
de Paula ASA, Malmegrim KC, Panepucci RA, Brum DS, Barreira AA, Carlos-Dos-Santos A, et al. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin Sci (Lond) 2015;128(2):111–120. doi: 10.1042/CS20140095. PubMed DOI
Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA. 2019;321(2):165–174. doi: 10.1001/jama.2018.18743. PubMed DOI PMC
Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, et al. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol. 2002;249(8):1088–1097. doi: 10.1007/s00415-002-0800-7. PubMed DOI
Fassas A, Kimiskidis VK, Sakellari I, Kapinas K, Anagnostopoulos A, Tsimourtou V, et al. Long-term results of stem cell transplantation for MS: a single-center experience. Neurology. 2011;76(12):1066–1070. doi: 10.1212/WNL.0b013e318211c537. PubMed DOI
Ni XS, Ouyang J, Zhu WH, Wang C, Chen B. Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three year of follow up in 21 patients. Clin Transplant. 2006;20(4):485–489. doi: 10.1111/j.1399-0012.2006.00510.x. PubMed DOI
Casanova B, Jarque I, Gascon F, Hernandez-Boluda JC, Perez-Miralles F, de la Rubia J, et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. Neurol Sci. 2017;38(7):1213–1221. doi: 10.1007/s10072-017-2933-6. PubMed DOI PMC
Haussler V, Ufer F, Pottgen J, Wolschke C, Friese MA, Kroger N, et al. aHSCT is superior to alemtuzumab in maintaining NEDA and improving cognition in multiple sclerosis. Ann Clin Transl Neurol. 2021;8(6):1269–1278. doi: 10.1002/acn3.51366. PubMed DOI PMC
Mariottini A, Filippini S, Innocenti C, Forci B, Mechi C, Barilaro A, et al. Impact of autologous haematopoietic stem cell transplantation on disability and brain atrophy in secondary progressive multiple sclerosis. Mult Scler. 2021;27(1):61–70. doi: 10.1177/1352458520902392. PubMed DOI
Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler. 2012;18(6):835–842. doi: 10.1177/1352458511429320. PubMed DOI
Krasulova E, Trneny M, Kozak T, Vackova B, Pohlreich D, Kemlink D, et al. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scler. 2010;16(6):685–693. doi: 10.1177/1352458510364538. PubMed DOI
Mariottini A, Bulgarini G, Forci B, Innocenti C, Mealli F, Mattei A, et al. Autologous haematopoietic stem cell transplantation versus low-dose immunosuppression in secondary-progressive multiple sclerosis. Eur J Neurol. 2022 doi: 10.1111/ene.15280. PubMed DOI PMC
Comini-Frota ER, Marques BCC, Torres C, Cohen KMS, Miranda EC. Nine-year follow up after hematopoietic stem cell transplantation in five multiple sclerosis patients. Arq Neuropsiquiatr. 2019;77(8):531–535. doi: 10.1590/0004-282X20190097. PubMed DOI
Zhukovsky C, Sandgren S, Silfverberg T, Einarsdottir S, Tolf A, Landtblom AM, et al. Autologous haematopoietic stem cell transplantation compared with alemtuzumab for relapsing-remitting multiple sclerosis: an observational study. J Neurol Neurosurg Psychiatry. 2021;92(2):189–194. doi: 10.1136/jnnp-2020-323992. PubMed DOI PMC
Kvistad SAS, Lehmann AK, Trovik LH, Kristoffersen EK, Bo L, Myhr KM, et al. Safety and efficacy of autologous hematopoietic stem cell transplantation for multiple sclerosis in Norway. Mult Scler. 2020;26(14):1889–1897. doi: 10.1177/1352458519893926. PubMed DOI
Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015;313(3):275–284. doi: 10.1001/jama.2014.17986. PubMed DOI
Burt RK, Han X, Quigley K, Helenowski IB, Balabanov R. Real-world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J Neurol. 2021 doi: 10.1007/s00415-021-10820-2. PubMed DOI PMC
Boffa G, Massacesi L, Inglese M, Mariottini A, Capobianco M, Lucia M, et al. Long-term clinical outcomes of hematopoietic stem cell transplantation in multiple sclerosis. Neurology. 2021 doi: 10.1212/WNL.0000000000011461. PubMed DOI
Frau J, Carai M, Coghe G, Fenu G, Lorefice L, La Nasa G, et al. Long-term follow-up more than 10 years after HSCT: a monocentric experience. J Neurol. 2018;265(2):410–416. doi: 10.1007/s00415-017-8718-2. PubMed DOI
Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74(4):459–469. doi: 10.1001/jamaneurol.2016.5867. PubMed DOI PMC
Das J, Snowden JA, Burman J, Freedman MS, Atkins H, Bowman M, et al. Autologous haematopoietic stem cell transplantation as a first-line disease-modifying therapy in patients with 'aggressive' multiple sclerosis. Mult Scler. 2021;27(8):1198–1204. doi: 10.1177/1352458520985238. PubMed DOI PMC
Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry. 2014;85(10):1116–1121. doi: 10.1136/jnnp-2013-307207. PubMed DOI
Tolf A, Fagius J, Carlson K, Akerfeldt T, Granberg T, Larsson EM, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320–327. doi: 10.1111/ane.13147. PubMed DOI
Nicholas RS, Rhone EE, Mariottini A, Silber E, Malik O, Singh-Curry V, et al. Autologous hematopoietic stem cell transplantation in active multiple sclerosis: a real-world case series. Neurology. 2021;97(9):e890–e901. doi: 10.1212/WNL.0000000000012449. PubMed DOI PMC
Mancardi G, Saccardi R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 2008;7(7):626–636. doi: 10.1016/S1474-4422(08)70138-8. PubMed DOI
Neurotoxicity of chemotherapy. Nat Clin Pract Neurol. 2007;3(3):125. 10.1038/ncpneuro0418
Amato AA, Dumitru D. Chapter 23—acquired neuropathies. In: Dumitru D, Amato AA, Zwarts M, editors. Elextrodiagnostic medicine. 2. Boston: Hanley & Belfus; 2002. pp. 937–1041.
Baker WJ, Royer GL, Jr, Weiss RB. Cytarabine and neurologic toxicity. J Clin Oncol. 1991;9(4):679–693. doi: 10.1200/JCO.1991.9.4.679. PubMed DOI
Najera JE, Sudhakar T, Bashir Q, Shah N, Champlin RE, Qazilbash MH, et al. Neurotoxicity after high-dose melphalan. J Clin Oncol. 2012;30(15 suppl):6546. doi: 10.1200/jco.2012.30.15_suppl.6546. DOI
Daikeler T, Tichelli A, Passweg J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr Res. 2012;71(4 Pt 2):439–444. doi: 10.1038/pr.2011.57. PubMed DOI
Cencioni MT, Genchi A, Brittain G, de Silva TI, Sharrack B, Snowden JA, et al. Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: a review on behalf of the EBMT autoimmune diseases working party. Front Immunol. 2021;12:813957. doi: 10.3389/fimmu.2021.813957. PubMed DOI PMC
Goverman JM. Immune tolerance in multiple sclerosis. Immunol Rev. 2011;241(1):228–240. doi: 10.1111/j.1600-065X.2011.01016.x. PubMed DOI PMC
Goverman JM, Regulatory T. Cells in multiple sclerosis. N Engl J Med. 2021;384(6):578–580. doi: 10.1056/NEJMcibr2033544. PubMed DOI
Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50(3):380–389. doi: 10.1038/bmt.2014.277. PubMed DOI
Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain. 2013;136(Pt 9):2888–2903. doi: 10.1093/brain/awt182. PubMed DOI PMC
Jaime-Perez JC, Turrubiates-Hernandez GA, Lopez-Silva LJ, Salazar-Riojas R, Gomez-Almaguer D. Early changes in IL-21, IL-22, CCL2, and CCL4 serum cytokines after outpatient autologous transplantation for multiple sclerosis: a proof of concept study. Clin Transplant. 2020;34(12):e14114. doi: 10.1111/ctr.14114. PubMed DOI
Darlington PJ, Stopnicki B, Touil T, Doucet JS, Fawaz L, Roberts ME, et al. Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front Immunol. 2018;9:834. doi: 10.3389/fimmu.2018.00834. PubMed DOI PMC
Larochelle C, Wasser B, Jamann H, Loffel JT, Cui QL, Tastet O, et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc Natl Acad Sci U S A. 2021 doi: 10.1073/pnas.2025813118. PubMed DOI PMC
Harris KM, Lim N, Lindau P, Robins H, Griffith LM, Nash RA, et al. Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis. JCI Insight. 2020 doi: 10.1172/jci.insight.127655. PubMed DOI PMC
Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–816. doi: 10.1084/jem.20041679. PubMed DOI PMC
Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115(4):930–939. doi: 10.1172/JCI22492. PubMed DOI PMC
Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124(3):1168–1172. doi: 10.1172/JCI71691. PubMed DOI PMC
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating thymic function after human hematopoietic stem cell transplantation in the personalized medicine era. Front Immunol. 2020;11:1341. doi: 10.3389/fimmu.2020.01341. PubMed DOI PMC
Amoriello R, Greiff V, Aldinucci A, Bonechi E, Carnasciali A, Peruzzi B, et al. The TCR repertoire reconstitution in multiple sclerosis: comparing one-shot and continuous immunosuppressive therapies. Front Immunol. 2020;11:559. doi: 10.3389/fimmu.2020.00559. PubMed DOI PMC
Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL, et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology. 2006;66(12):1935–1937. doi: 10.1212/01.wnl.0000219816.44094.f8. PubMed DOI
Inglese M, Mancardi GL, Pagani E, Rocca MA, Murialdo A, Saccardi R, et al. Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation. J Neurol Neurosurg Psychiatry. 2004;75(4):643–644. PubMed PMC
Rocca MA, Mondria T, Valsasina P, Sormani MP, Flach ZH, Te Boekhorst PA, et al. A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis. AJNR Am J Neuroradiol. 2007;28(9):1659–1661. doi: 10.3174/ajnr.A0644. PubMed DOI PMC
Mariottini A, Marchi L, Innocenti C, Di Cristinzi M, Pasca M, Filippini S, et al. Intermediate-intensity autologous hematopoietic stem cell transplantation reduces serum neurofilament light chains and brain atrophy in aggressive multiple sclerosis. Front Neurol. 2022;13:820256. doi: 10.3389/fneur.2022.820256. PubMed DOI PMC
Meca-Lallana V, Berenguer-Ruiz L, Carreres-Polo J, Eichau-Madueno S, Ferrer-Lozano J, Forero L, et al. Deciphering multiple sclerosis progression. Front Neurol. 2021;12:608491. doi: 10.3389/fneur.2021.608491. PubMed DOI PMC
Arruda LCM, de Azevedo JTC, de Oliveira GLV, Scortegagna GT, Rodrigues ES, Palma PVB, et al. Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol. 2016;169:47–57. doi: 10.1016/j.clim.2016.06.005. PubMed DOI