Variability of the response to immunotherapy among subgroups of patients with multiple sclerosis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36692895
PubMed Central
PMC10946605
DOI
10.1111/ene.15706
Knihovny.cz E-zdroje
- Klíčová slova
- EDSS, immunotherapy, marginal structural model, multiple sclerosis, relapse,
- MeSH
- chronicko-progresivní roztroušená skleróza * MeSH
- imunoterapie MeSH
- lidé MeSH
- proporcionální rizikové modely MeSH
- recidiva MeSH
- relabující-remitující roztroušená skleróza * MeSH
- roztroušená skleróza * terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND PURPOSE: This study assessed the effect of patient characteristics on the response to disease-modifying therapy (DMT) in multiple sclerosis (MS). METHODS: We extracted data from 61,810 patients from 135 centers across 35 countries from the MSBase registry. The selection criteria were: clinically isolated syndrome or definite MS, follow-up ≥ 1 year, and Expanded Disability Status Scale (EDSS) score ≥ 3, with ≥1 score recorded per year. Marginal structural models with interaction terms were used to compare the hazards of 12-month confirmed worsening and improvement of disability, and the incidence of relapses between treated and untreated patients stratified by their characteristics. RESULTS: Among 24,344 patients with relapsing MS, those on DMTs experienced 48% reduction in relapse incidence (hazard ratio [HR] = 0.52, 95% confidence interval [CI] = 0.45-0.60), 46% lower risk of disability worsening (HR = 0.54, 95% CI = 0.41-0.71), and 32% greater chance of disability improvement (HR = 1.32, 95% CI = 1.09-1.59). The effect of DMTs on EDSS worsening and improvement and the risk of relapses was attenuated with more severe disability. The magnitude of the effect of DMT on suppressing relapses declined with higher prior relapse rate and prior cerebral magnetic resonance imaging activity. We did not find any evidence for the effect of age on the effectiveness of DMT. After inclusion of 1985 participants with progressive MS, the effect of DMT on disability mostly depended on MS phenotype, whereas its effect on relapses was driven mainly by prior relapse activity. CONCLUSIONS: DMT is generally most effective among patients with lower disability and in relapsing MS phenotypes. There is no evidence of attenuation of the effect of DMT with age.
Aarhus University Hospital Aarhus Denmark
Austin Health Melbourne Victoria Australia
Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino Avellino Italy
Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases Istanbul Turkey
Brain and Mind Centre Sydney New South Wales Australia
Center of Neuroimmunology Service of Neurology Hospital Clinic of Barcelona Barcelona Spain
Central Clinical School Monash University Melbourne Victoria Australia
CHUM Mississippi Center and University of Montreal Montreal Quebec Canada
CISSS Chaudière Appalache Levis Sainte Marie Quebec Canada
Cliniques Universitaires Saint Luc Louvain Brussels Belgium
CSSS Saint Jerome Saint Jerome Quebec Canada
Department of Medical and Surgical Sciences and Advanced Technologies GF Ingrassia Catania Italy
Department of Medicine and Surgery University of Parma Parma Italy
Department of Medicine CORe University of Melbourne Melbourne Victoria Australia
Department of Medicine Sultan Qaboos University Hospital Seeb Oman
Department of Neurology Alfred Hospital Melbourne Victoria Australia
Department of Neurology ASL3 Genovese Genoa Italy
Department of Neurology Centro Hospitalar Universitário de São João Porto Portugal
Department of Neurology Faculty of Medicine University of Debrecen Debrecen Hungary
Department of Neurology Neuroimmunology Centre Royal Melbourne Hospital Melbourne Victoria Australia
Department of Neurology Razi Hospital Manouba Tunisia
Department of Neurology School of Medicine Koc University Istanbul Turkey
Department of Neuroscience Azienda Ospedaliera Universitaria Modena Italy
Department of Neuroscience Imaging and Clinical Sciences D'Annunzio University Chieti Italy
Department of Rehabilitation ML Novarese Hospital Moncrivello Genoa Italy
Dipartimento di Scienze Biomediche e Neuromotorie Università di Bologna Bologna Italy
Division of Neurology Department of Medicine Amiri Hospital Sharq Kuwait
Dokuz Eylul University Konak Izmir Turkey
Flinders University Adelaide South Australia Australia
Garibaldi Hospital Catania Italy
Groene Hart Ziekenhuis Gouda the Netherlands
Hacettepe University Ankara Turkey
Haydarpasa Numune Training and Research Hospital Istanbul Turkey
Hospital de Galdakao Usansolo Galdakao Spain
Hospital Fernandez Buenos Aires Argentina
Hospital General Universitario de Alicante Alicante Spain
Hospital Italiano Buenos Aires Argentina
Hospital Universitario Virgen Macarena Seville Spain
Instituto de Investigacion Sanitaria Biodonostia Hospital Universitario Donostia San Sebastian Spain
Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran Mexico City Mexico
IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna Italy
IRCCS Mondino Foundation Pavia Italy
Isfahan University of Medical Sciences Isfahan Iran
Jewish General Hospital Montreal Quebec Canada
Koc University Research Center for Translational Medicine Istanbul Turkey
KTU Medical Faculty Farabi Hospital Trabzon Turkey
Liverpool Hospital Sydney New South Wales Australia
Medical Center Leeuwarden Leeuwarden the Netherlands
Monash Medical Centre Melbourne Victoria Australia
Nemocnice Jihlava Jihlava Czech Republic
Neuro Rive Sud Quebec City Quebec Canada
Neurology Department King Fahad Specialist Hospital Dammam Dammam Saudi Arabia
Neurology Kasr Al Ainy MS Research Unit Cairo Egypt
Ospedali Riuniti di Salerno Salerno Italy
Postgraduate Institute of Medical Education and Research Chandigarh India
Rehabilitation and MS Center Overpelt and Hasselt University Hasselt Belgium
Royal Victoria Hospital Belfast UK
School of Medicine and Public Health University of Newcastle Newcastle New South Wales Australia
School of Medicine Ondokuz Mayis University Samsun Turkey
St Vincent's University Hospital Dublin Ireland
Trias and Pujol Brothers University Hospital Badalona Spain
Universidade Metropolitana de Santos Santos Brazil
University Hospital Geelong Geelong Victoria Australia
University Hospital Ghent Ghent Belgium
University Hospital Reina Sofia Cordoba Spain
University of Queensland Brisbane Queensland Australia
UOC Neurologia Azienda Sanitaria Unica Regionale Marche AV3 Macerata Italy
Waikato Hospital Hamilton New Zealand
Zobrazit více v PubMed
Goodin DS, Jones J, Li D, et al. Establishing long‐term efficacy in chronic disease: use of recursive partitioning and propensity score adjustment to estimate outcome in MS. PLoS One. 2011;6:e22444. PubMed PMC
Goodin DS, Reder AT, Ebers GC, et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNbeta‐1b trial. Neurology. 2012;78:1315‐1322. PubMed PMC
Kappos L, Edan G, Freedman MS, et al. The 11‐year long‐term follow‐up study from the randomized BENEFIT CIS trial. Neurology. 2016;87:978‐987. PubMed PMC
Kappos L, Radue EW, O'Connor P, et al. A placebo‐controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387‐401. PubMed
Kavaliunas A, Manouchehrinia A, Stawiarz L, et al. Importance of early treatment initiation in the clinical course of multiple sclerosis. Mult Scler. 2017;23:1233‐1240. PubMed
Kinkel RP, Kollman C, O'Connor P, et al. IM interferon beta‐1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology. 2006;66:678‐684. PubMed
Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo‐controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899‐910. PubMed
Correale J, Gaitan MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527‐546. PubMed
Kapoor R, Ho PR, Campbell N, et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double‐blind, placebo‐controlled trial with an open‐label extension. Lancet Neurol. 2018;17:405‐415. PubMed
Kappos L, Bar‐Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double‐blind, randomised, phase 3 study. Lancet. 2018;391:1263‐1273. PubMed
Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209‐220. PubMed
Williamson T, Ravani P. Marginal structural models in clinical research: when and how to use them? Nephrol Dial Transplant. 2017;32:ii84‐ii90. PubMed
Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550‐560. PubMed
Karim ME, Gustafson P, Petkau J, et al. Marginal structural Cox models for estimating the association between beta‐interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol. 2014;180:160‐171. PubMed PMC
Kalincik T, Diouf I, Sharmin S, et al. Effect of disease‐modifying therapy on disability in relapsing‐remitting multiple sclerosis over 15 years. Neurology. 2021;96:e783‐e797. PubMed PMC
Kalincik T, Kuhle J, Pucci E, et al. Data quality evaluation for observational multiple sclerosis registries. Mult Scler. 2017;23:647‐655. PubMed
Roos I, Leray E, Frascoli F, et al. Delay from treatment start to full effect of immunotherapies for multiple sclerosis. Brain. 2020;143:2742‐2756. PubMed
Roos I, Leray E, Casey R, et al. Effects of high‐ and low‐efficacy therapy in secondary progressive multiple sclerosis. Neurology. 2021;97:e869‐e880. PubMed
Kalincik T, Cutter G, Spelman T, et al. Defining reliable disability outcomes in multiple sclerosis. Brain. 2015;138:3287‐3298. PubMed
D'Souza M, Yaldizli O, John R, et al. Neurostatus e‐scoring improves consistency of expanded disability status scale assessments: a proof of concept study. Mult Scler. 2017;23:597‐603. PubMed
Dobson R, Giovannoni G. Multiple sclerosis ‐ a review. Eur J Neurol. 2019;26:27‐40. PubMed
Palace J, Duddy M, Lawton M, et al. Assessing the long‐term effectiveness of interferon‐beta and glatiramer acetate in multiple sclerosis: final 10‐year results from the UK multiple sclerosis risk‐sharing scheme. J Neurol Neurosurg Psychiatry. 2019;90:251‐260. PubMed PMC
Hernan MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183:758‐764. PubMed PMC
Sterne JA, Hernan MA, Ledergerber B, et al. Long‐term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort study. Lancet. 2005;366:378‐384. PubMed
Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol. 2006;5:343‐354. PubMed
Fambiatos A, Jokubaitis V, Horakova D, et al. Risk of secondary progressive multiple sclerosis: a longitudinal study. Mult Scler. 2020;26:79‐90. PubMed
Koch M, Uyttenboogaart M, van Harten A, De Keyser J. Factors associated with the risk of secondary progression in multiple sclerosis. Mult Scler. 2008;14:799‐803. PubMed
Skoog B, Tedeholm H, Runmarker B, Oden A, Andersen O. Continuous prediction of secondary progression in the individual course of multiple sclerosis. Mult Scler Relat Disord. 2014;3:584‐592. PubMed
Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol. 2006;253:98‐108. PubMed
Leray E, Yaouanq J, Le Page E, et al. Evidence for a two‐stage disability progression in multiple sclerosis. Brain. 2010;133:1900‐1913. PubMed PMC
Giovannoni G, Sellebjerg F. CSJDRDCYDQHPRCDADSD. Sustained Disability Improvement in Patients with Secondary Progressive Multiple Sclerosis (SPMS) Assessed by a Multicomponent Endpoint: A Post Hoc Analysis from the ASCEND Study. ECTRIMS Online Library; 2016.
Goodkin DE, Rudick RA, VanderBrug Medendorp S, et al. Low‐dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol. 1995;37:30‐40. PubMed
Tur C, Montalban X, Tintore M, et al. Interferon beta‐1b for the treatment of primary progressive multiple sclerosis: five‐year clinical trial follow‐up. Arch Neurol. 2011;68:1421‐1427. PubMed
Ravnborg M, Blinkenberg M, Sellebjerg F, Ballegaard M, Larsen SH, Sorensen PS. Responsiveness of the multiple sclerosis impairment scale in comparison with the expanded disability status scale. Mult Scler. 2005;11:81‐84. PubMed
Spelman T, Kalincik T, Jokubaitis V, et al. Comparative efficacy of first‐line natalizumab vs IFN‐beta or glatiramer acetate in relapsing MS. Neurol Clin Pract. 2016;6:102‐115. PubMed PMC
Spelman T, Kalincik T, Zhang A, et al. Comparative efficacy of switching to natalizumab in active multiple sclerosis. Ann Clin Transl Neurol. 2015;2:373‐387. PubMed PMC
Jokubaitis VG, Spelman T, Kalincik T, et al. Predictors of long‐term disability accrual in relapse‐onset multiple sclerosis. Ann Neurol. 2016;80:89‐100. PubMed
Weideman AM, Tapia‐Maltos MA, Johnson K, Greenwood M, Bielekova B. Meta‐analysis of the age‐dependent efficacy of multiple sclerosis treatments. Front Neurol. 2017;8:577. PubMed PMC
Giovannoni G, Butzkueven H, Dhib‐Jalbut S, et al. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord. 2016;9(Suppl 1):S5‐S48. PubMed
Brown JWL, Coles A, Horakova D, et al. Association of Initial Disease‐Modifying Therapy with Later Conversion to secondary progressive multiple sclerosis. Jama. 2019;321:175‐187. PubMed PMC
He A, Spelman T, Jokubaitis V, et al. Comparison of switch to fingolimod or interferon beta/glatiramer acetate in active multiple sclerosis. JAMA Neurol. 2015;72:405‐413. PubMed
Merkel B, Butzkueven H, Traboulsee AL, Havrdova E, Kalincik T. Timing of high‐efficacy therapy in relapsing‐remitting multiple sclerosis: a systematic review. Autoimmun Rev. 2017;16:658‐665. PubMed
ANZCTR
ACTRN12605000455662