Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates Inhibit SARS-CoV-2 Replication

. 2021 Oct 30 ; 14 (11) : . [epub] 20211030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34832893

Grantová podpora
GINOP-2.3.2-15-2016-00044, and GINOP-2.3.4-15-2020-00008 European Regional Development Fund
K 131493 and KH129599 National Research, Development and Innovation Office of Hungary
TUDFO/47138/2019-ITM Ministry for Innovation and Technology of Hungary

The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and β-apo-8'carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.

Zobrazit více v PubMed

Wang P., Nair M.S., Liu L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P.D., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130–135. doi: 10.1038/s41586-021-03398-2. PubMed DOI

Gomez. C.E., Perdiguero B., Esteban M. Emerging SARS-CoV-2 variants and impact in global vaccination programs against SARS-CoV-2/COVID-19. Vaccines. 2021;9:243. doi: 10.3390/vaccines9030243. PubMed DOI PMC

Jean S.-S., Hsueh P.-R. Old and repurposed drugs for the treatment of COVID-19. Expert Rev. Anti-Infect. Ther. 2020;18:843–847. doi: 10.1080/14787210.2020.1771181. PubMed DOI PMC

Xiao X., Wang C., Chang D., Wang Y., Dong X., Jiao T., Zhao Z., Ren L., Dela Cruz C.S., Sharma L., et al. Identification of Potent and Safe Antiviral Therapeutic Candidates against SARS-CoV-2. Front. Immunol. 2020;11:586572. doi: 10.3389/fimmu.2020.586572. PubMed DOI PMC

Furuta Y., Takahashi K., Shiraki K., Sakamoto K., Smee D.F., Barnard D.L., Gowen B.B., Julander J.G., Morrey J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antivir. Res. 2009;82:95–102. doi: 10.1016/j.antiviral.2009.02.198. PubMed DOI PMC

Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. J. Am. Med. Assoc. 2020;323:1824–1836. doi: 10.1001/jama.2020.6019. PubMed DOI

Bansal V., Mahapure K.S., Bhurwal A., Gupta I., Hassanain S., Makadia J., Madas N., Armaly P., Singh R., Mehra I., et al. Mortality benefit of remdesivir in COVID-19: A systematic review and meta-analysis. Front. Med. 2020;7:606429. doi: 10.3389/fmed.2020.606429. PubMed DOI PMC

Chodera J., Lee A.A., London N., von Delft F. Crowdsourcing drug discovery for pandemics. Nat. Chem. 2020;12:581. doi: 10.1038/s41557-020-0496-2. PubMed DOI

Douangamath A., Fearon D., Gehrtz P., Krojer T., Lukacik P., Owen C.D., Resnick E., Strain-Damerell C., Aimon A., Ábrányi-Balogh P., et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun. 2020;11:5047. doi: 10.1038/s41467-020-18709-w. PubMed DOI PMC

Schuller M., Correy G.J., Gahbauer S., Fearon D., Wu T., Díaz R.E., Young I.D., Martins L.C., Smith D.H., Schulze-Gahmen U., et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci. Adv. 2021;7:eabf8711. doi: 10.1126/sciadv.abf8711. PubMed DOI PMC

Cox O.B., Krojer T., Collins P., Monteiro O., Talon R., Bradley A., Fedorov O., Amin J., Marsden B.D., Spencer J., et al. A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain. Chem. Sci. 2016;7:2322–2330. doi: 10.1039/C5SC03115J. PubMed DOI PMC

Bajusz D., Wade W.S., Satała G., Bojarski A.J., Ilaš J., Ebner J., Grebien F., Papp H., Jakab F., Douangamath A., et al. Exploring protein hotspots by optimized fragment pharmacophores. Nat. Commun. 2021;12:3201. doi: 10.1038/s41467-021-23443-y. PubMed DOI PMC

Bakowski M.A., Beutler N., Wolff K.C., Kirkpatrick M.G., Chen E., Nguyen T.-T.H., Riva L., Shaabani N., Parren M., Ricketts J., et al. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nat. Commun. 2021;12:3309. doi: 10.1038/s41467-021-23328-0. PubMed DOI PMC

Xiang R., Yu Z., Wang Y., Wang L., Huo S., Li Y., Liang R., Hao Q., Ying T., Gao Y., et al. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm. Sin. B. 2021 doi: 10.1016/j.apsb.2021.06.016. PubMed DOI PMC

Gomes C.P., Fernandes D.E., Casimiro F., da Mata G.F., Passos M.T., Varela P., Mastroianni-Kirsztajn G., Pesquero J.B. Cathepsin L in COVID-19: From pharmacological evidences to genetics. Front. Cell. Infect. Microbiol. 2020;10:589505. doi: 10.3389/fcimb.2020.589505. PubMed DOI PMC

Liu T., Luo S., Libby P., Shi G.-P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020;213:107587. doi: 10.1016/j.pharmthera.2020.107587. PubMed DOI PMC

Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 2020;178:104792. doi: 10.1016/j.antiviral.2020.104792. PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiegens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., et al. Characterisation of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11:1620. doi: 10.1038/s41467-020-15562-9. PubMed DOI PMC

Zhao M.-M., Yang W.-L., Yang F.-Y., Zhang L., Huang W.-J., Hou W., Fan C.-F., Jin R.-H., Feng Y.-M., Wang Y.-C., et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 2021;6:134. doi: 10.1038/s41392-021-00558-8. PubMed DOI PMC

Zhou N., Pan T., Zhang J., Li Q., Zhang X., Bai C., Huang F., Peng T., Zhang J., Liu C., et al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) J. Biol. Chem. 2016;291:9218–9232. doi: 10.1074/jbc.M116.716100. PubMed DOI PMC

Zhang J., Ma X., Yu F., Liu J., Zou F., Pan T., Zhang H. Teicoplanin potently blocks the cell entry of 2019-nCoV. bioRxiv. 2020 doi: 10.1101/2020.02.05.935387. DOI

Baron S.A., Devaux C., Colson P., Raoult D., Rolain J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents. 2020;55:105944. doi: 10.1016/j.ijantimicag.2020.105944. PubMed DOI PMC

Ceccarelli G., Alessandri F., Oliva A., Borrazzo C., Dell’Isola S., Ialungo A.M., Rastrelli E., Pelli M., Raponi G., Turriziani O., et al. The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study) J. Med. Virol. 2021;93:4319–4325. doi: 10.1002/jmv.26925. PubMed DOI PMC

Balzarini J., Keyaerts E., Vijgen L., Egberink H., De Clercq E., Van Ranst M., Printsevskaya S.S., Olsufyeva E.N., Solovieva S.E., Preobrazhenskaya M.N. Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide antibiotics. Antivir. Res. 2006;72:20–33. doi: 10.1016/j.antiviral.2006.03.005. PubMed DOI PMC

Szűcs Z., Naesens L., Stevaert A., Ostorházi E., Batta G., Herczegh P., Borbás A. Reprogramming of the antibacterial drug vancomycin results in potent antiviral agents devoid of antibacterial activity. Pharmaceuticals. 2020;13:139. doi: 10.3390/ph13070139. PubMed DOI PMC

Bereczki I., Csávás M., Szűcs Z., Rőth E., Batta G., Ostorházi E., Naesens L., Borbás A., Herczegh P. Synthesis of antiviral perfluoroalkyl derivatives of teicoplanin and vancomycin. ChemMedChem. 2020;15:1661–1671. doi: 10.1002/cmdc.202000260. PubMed DOI PMC

Balzarini J., Pannecouque C., De Clercq E., Pavlov A.Y., Printsevskaya S.S., Miroshnikova O.V., Reznikova M.I., Preobrazhenskaya M.N. Antiretroviral Activity of Semisynthetic Derivatives of Glycopeptide Antibiotics. J. Med. Chem. 2003;46:2755–2764. doi: 10.1021/jm0300882. PubMed DOI

De Burghgraeve T., Kaptein S.J., Ayala-Nunez N.V., Mondotte J.A., Pastorino B., Printsevskaya S.S., de Lamballerie X., Jacobs M., Preobrazhenskaya M., Gamarnik A.V., et al. An analogue of the antibiotic teicoplanin prevents Flavivirus entry in vitro. PLoS ONE. 2012;7:e37244. doi: 10.1371/journal.pone.0037244. PubMed DOI PMC

Naesens L., Vanderlinden E., Rőth E., Jekő J., Andrei G., Snoeck R., Pannecouque C., Illyés E., Batta G., Herczegh P., et al. Anti-influenza virus activity and structure–activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Antivir. Res. 2009;82:89–94. doi: 10.1016/j.antiviral.2009.01.003. PubMed DOI PMC

Pintér G., Batta G., Kéki S., Mándi A., Komáromi I., Takács-Novák K., Sztaricskai F., Rőth E., Ostorházi E., Rozgonyi F., et al. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycone derivatives with high antibacterial and anti-influenza virus activity: An aggregation and receptor binding study. J. Med. Chem. 2009;52:6053–6061. doi: 10.1021/jm900950d. PubMed DOI

Sipos A., Máté G., Rőth E., Borbás A., Batta G., Bereczki I., Kéki S., Jóna I., Ostorházi E., Rozgonyi F., et al. Synthesis of fluorescent ristocetin aglycone derivatives with remarkable antibacterial and antiviral activities. Eur. J. Med. Chem. 2012;58:361–367. doi: 10.1016/j.ejmech.2012.10.030. PubMed DOI

Bereczki I., Kicsák M., Dobray L., Borbás A., Batta G., Kéki S., Nemes Nikodém É., Ostorházi E., Rozgonyi F., Vanderlinden E., et al. Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: Synthesis and antiviral studies. Bioorg. Med. Chem. Lett. 2014;24:3251–3254. doi: 10.1016/j.bmcl.2014.06.018. PubMed DOI

Szűcs Z., Kelemen V., Thai S.L., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC

Hammond B.R., Renzi-Hammond L.M. Carotenoids. Adv. Nutr. 2013;4:474–476. doi: 10.3945/an.113.004028. PubMed DOI PMC

Kaulmann A., Bohn T. Carotenoids, inflammation, and oxidative stress—Implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014;34:907–929. doi: 10.1016/j.nutres.2014.07.010. PubMed DOI

Meléndez-Martínez A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin a in Agro-Food, Nutrition, Health, and Disease. Mol. Nutr. Food Res. 2019;63:1801045. doi: 10.1002/mnfr.201801045. PubMed DOI

Eroglu A., Harrison E.H. Carotenoid metabolism in mammals, including man: Formation, occurrence, and function of apocarotenoids. J. Lipid Res. 2013;54:1719–1730. doi: 10.1194/jlr.R039537. PubMed DOI PMC

Rivera-Madrid R., Aguilar-Espinosa M., Cárdenas-Conejo Y., Garza-Caligaris L.E. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties. Front. Plant Sci. 2016;7:1406. doi: 10.3389/fpls.2016.01406. PubMed DOI PMC

Nassiri-Asl M., Hosseinzadeh H. Neuropharmacology Effects of Saffron (Crocus sativus) and Its Active Constituents. In: Watson R.R., Preedy V.R., editors. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease, Prevention and Therapy. Academic Press, Elsevier; London, UK: 2015. pp. 29–39. DOI

Ebert D.H., Deussing J., Peters C., Dermody T.S. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J. Biol. Chem. 2002;277:24609–24617. doi: 10.1074/jbc.M201107200. PubMed DOI

Simmons G., Gosalia D.N., Rennekamp A.J., Reeves J.D., Diamond S.L., Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA. 2005;102:11876–11881. doi: 10.1073/pnas.0505577102. PubMed DOI PMC

Ryabchikova E.I., Kolesnikova L.V., Luchko S.V. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J. Infect. Dis. 1999;179:S199–S202. doi: 10.1086/514293. PubMed DOI

Chandran K., Sullivan N.J., Felbor U., Whelan S.P., Cunningham J.M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science. 2005;308:1643–1645. doi: 10.1126/science.1110656. PubMed DOI PMC

de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC

Tripathi P.K., Upadhyay S., Singh M., Raghavendhar S., Bhardwaj M., Sharma P., Patel A.K. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol. 2020;164:2622–2631. doi: 10.1016/j.ijbiomac.2020.08.166. PubMed DOI PMC

Keserű G.M., Kolossváry I. Fully flexible low-mode docking: Application to induced fit in HIV integrase. J. Am. Chem. Soc. 2001;123:12708–12709. doi: 10.1021/ja0160086. PubMed DOI

Kolossváry I., Guida W.C. Low mode search. An efficient, automated computational method for conformational analysis: Application to cyclic and acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 1996;118:5011–5019. doi: 10.1021/ja952478m. DOI

Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI

Xian Y., Zhang J., Bian Z., Zhou H., Zhang Z., Lin Z., Xu H. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B. 2020;10:1163–1174. doi: 10.1016/j.apsb.2020.06.002. PubMed DOI PMC

Vougogiannopoulou K., Corona A., Tramontano E., Alexis M.N., Skaltsounis A.L. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules. 2021;26:448. doi: 10.3390/molecules26020448. PubMed DOI PMC

Umesh U., Kundu D., Selvaraj C., Singh S.K., Dubey V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn. 2020;39:3428–3434. doi: 10.1080/07391102.2020.1763202. PubMed DOI PMC

Andrault P.M., Samsonov S.A., Weber G., Coquet L., Nazmi K., Bolscher J.G., Lalmanach A.C., Jouenne T., Brömme D., Pisabarro M.T., et al. Antimicrobial peptide LL-37 is both a substrate of cathepsins S and K and a selective inhibitor of Cathepsin L. Biochemistry. 2015;54:2785–2798. doi: 10.1021/acs.biochem.5b00231. PubMed DOI

Scharinger F., Pálvölgyi A.M., Zeindlhofer V., Schnürch M., Schröder C., Bica-Schröder K. Counterion Enhanced Organocatalysis: A Novel Approach for the Asymmetric Transfer Hydrogenation of Enone. ChemCatChem. 2020;12:3776–3782. doi: 10.1002/cctc.202000414. PubMed DOI PMC

Sztaricskai F., Batta G., Herczegh P., Balázs A., Jekő J., Rőth E., Szabó P.T., Kardos S., Rozgonyi F., Boda Z. A new series of glycopeptide antibiotics incorporating a squaric acid moiety. Synthesis, structural and antibacterial studies. J. Antibiot. 2006;59:564–582. doi: 10.1038/ja.2006.77. PubMed DOI

Malabarba A., Ferrari P., Gallo G.G., Kettenring J., Cavalleri B. Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VII. Preparation and NMR characteristics of the aglycone of teicoplanin. J. Antibiot. 1986;39:1430–1442. doi: 10.7164/antibiotics.39.1430. PubMed DOI

Häberli A., Pfander H. Synthesis of Bixin and Three Minor Carotenoids from Annatto (Bixa orellana) Chim. Acta. 1999;82:696–706. doi: 10.1002/(SICI)1522-2675(19990505)82:5<696::AID-HLCA696>3.0.CO;2-X. DOI

Frederico D., Donate P.M., Constantino M.G., Bronze E.S., Sairre M.I. A short and efficient synthesis of crocetin-dimethylester and crocetindial. J. Org. Chem. 2003;68:9126–9128. doi: 10.1021/jo034545y. PubMed DOI

Scotter M. The chemistry and analysis of annatto food colouring: A review. Food Addit. Contam. Part A. 2009;26:1123–1145. doi: 10.1080/02652030902942873. DOI

Kuhelj R., Dolinar M., Pungerčar J., Turk V. The Preparation of Catalytically Active Human Cathepsin B from Its Precursor Expressed in Escherichia coli in the Form of Inclusion Bodies. Eur. J. Biochem. 1995;229:533–539. doi: 10.1111/j.1432-1033.1995.0533k.x. PubMed DOI

Dolinar M., Maganja D.B., Turk V. Expression of Full-Length Human Procathepsin L cDNA in Escherichia coli and Refolding of the Expression Product. Biol. Chem. Hoppe. Seyler. 1995;376:385–388. doi: 10.1515/bchm3.1995.376.6.385. PubMed DOI

Feng B.Y., Shoichet B.K. A detergent-based assay for the detection of promiscuous inhibitors. Nat. Protoc. 2006;1:550–553. doi: 10.1038/nprot.2006.77. PubMed DOI PMC

Tomar S., Johnston M.L., St John S.E., Osswald H.L., Nyalapatla P.R., Paul L.N., Ghosh A.K., Denison M.R., Mesecar A.D. Ligand-induced dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 protease (3CLpro): Implications for nsp5 regulation and the development of antivirals. J. Biol. Chem. 2015;290:19403–19422. doi: 10.1074/jbc.M115.651463. PubMed DOI PMC

Zhang J., Pettersson H.I., Huitema C., Niu C., Yin J., James N.M.G., Eltis L.D., Vederas J.C. Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters. J. Med. Chem. 2007;50:1850–1864. doi: 10.1021/jm061425k. PubMed DOI

Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2020. CLSI Supplement M100.

Wei B., Gunzner-Toste J., Yao H., Wang T., Wang J., Xu Z., Chen J., Wai J., Nonomiya J., Tsai S.P., et al. Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity. J. Med. Chem. 2018;61:989–1000. doi: 10.1021/acs.jmedchem.7b01430. PubMed DOI

Shenoy R.T., Chowdhury S.F., Kumar S., Joseph L., Purisima E.O., Sivaraman J. A combined crystallographic and molecular dynamics study of cathepsin L retrobinding inhibitors. J. Med. Chem. 2009;52:6335–6346. doi: 10.1021/jm900596y. PubMed DOI

Salomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013;3:198–210. doi: 10.1002/wcms.1121. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) The safety of annatto extracts (E 160b) as a food additive. EFSA J. 2016;14:e04544. doi: 10.2903/j.efsa.2016.4544. DOI

European Food Safety Authority (EFSA) Tard A. Exposure assessment of annatto colouring principles bixin and norbixin (E 160b) when as food additives. EFSA J. 2017;15:e04966. doi: 10.2903/j.efsa.2.17.496. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...