S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling

. 2019 Feb 21 ; 8 (2) : . [epub] 20190221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30795534

S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.

Zobrazit více v PubMed

Hill B.G., Dranka B.P., Bailey S.M., Lancaster J.R., Jr., Darley-Usmar V.M. What part of NO don’t you under-stand? Some answers to the cardinal questions in nitric oxide biology. J. Biol. Chem. 2010;285:19699–19704. doi: 10.1074/jbc.R110.101618. PubMed DOI PMC

Groß F., Durner J., Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defense responses. Front. Plant Sci. 2013;4:419. doi: 10.3389/fpls.2013.00419. PubMed DOI PMC

Yu M., Lamattina L., Spoel S.H., Loake G.J. Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytol. 2014;202:1142–1156. doi: 10.1111/nph.12739. PubMed DOI

Sakihama Y., Nakamura S., Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: An alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol. 2002;43:290–297. doi: 10.1093/pcp/pcf034. PubMed DOI

Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants. 2013;5:pls052. doi: 10.1093/aobpla/pls052. PubMed DOI PMC

Corpas F.J., Palma J.M., del Río L.A., Barroso J.B. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 2009;184:9–14. doi: 10.1111/j.1469-8137.2009.02989.x. PubMed DOI

Corpas F.J., Barroso J.B. Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett. 2014;588:2049–2054. doi: 10.1016/j.febslet.2014.04.034. PubMed DOI

Foresi N., Correa-Aragunde N., Parisi G., Caló G., Salerno G., Lamattina L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 2010;22:3816–3830. doi: 10.1105/tpc.109.073510. PubMed DOI PMC

Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016;9:re2. doi: 10.1126/scisignal.aad4403. PubMed DOI

Gaston B. Nitric oxide and thiol groups. Biochim. Biophys. Acta. 1999;1411:323–333. doi: 10.1016/S0005-2728(99)00023-7. PubMed DOI

Handy D.E., Loscalzo J. Nitric Oxide and Posttranslational Modification of the Vascular Proteome. Arterioscler. Thromb. Vasc. Biol. 2006;26:1207–1214. doi: 10.1161/01.ATV.0000217632.98717.a0. PubMed DOI

Hess D.T., Stamler J.S. Regulation by S-nitrosylation of Protein Posttranslational Modification. J. Biol. Chem. 2011;287:4411–4418. doi: 10.1074/jbc.R111.285742. PubMed DOI PMC

Lamotte O., Bertoldo J.B., Besson-Bard A., Rosnoblet C., Aimé S., Hichami S., Terenzi H., Wendehenne D. Protein S-nitrosylation: Specificity and identification strategies in plants. Front. Chem. 2015;2:114. doi: 10.3389/fchem.2014.00114. PubMed DOI PMC

Corpas F.J., Barroso J.B. Nitro-oxidative stress vs. oxidative or nitrosative stress in higher plants. New Phytol. 2013;199:633–635. doi: 10.1111/nph.12380. PubMed DOI

Frungillo L., Skelly M.J., Loake G.J., Spoel S.H., Salgado I. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat. Commun. 2014;5:5401. doi: 10.1038/ncomms6401. PubMed DOI PMC

Martínez-Ruiz A., Lamas S. S-nitrosylation: A potential new paradigm in signal transduction. Cardiovasc. Res. 2004;62:43–52. doi: 10.1016/j.cardiores.2004.01.013. PubMed DOI

Corpas F.J., Alché J.D., Barroso J.B. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front. Plant Sci. 2013;4:126. doi: 10.3389/fpls.2013.00126. PubMed DOI PMC

Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410:490–494. doi: 10.1038/35068596. PubMed DOI

Sakamoto A., Ueda M., Morikawa H. Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett. 2002;515:20–24. doi: 10.1016/S0014-5793(02)02414-6. PubMed DOI

Uotila L., Mannervik B. A steady-state-kinetic model for formaldehyde dehydrogenase from human liver. A mechanism involving NAD+ and the hemimercaptal adduct of glutathione and formaldehyde as substrates and free glutathione as an allosteric activator of the enzyme. Biochem. J. 1979;177:869–878. doi: 10.1042/bj1770869. PubMed DOI PMC

Koivusalo M., Baumann M., Uotila L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 1989;257:105–109. doi: 10.1016/0014-5793(89)81797-1. PubMed DOI

Jensen D., Belka G., Du Bois G. S-nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem. J. 1998;331:659–668. doi: 10.1042/bj3310659. PubMed DOI PMC

Staab C.A., Hellgren M., Höög J.O. Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell. Mol. Life Sci. 2008;65:3950–3960. doi: 10.1007/s00018-008-8592-2. PubMed DOI PMC

Feechan A., Kwon E., Yun B.W., Wang Y., Pallas J.A., Loake G.J. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA. 2005;102:8054–8059. doi: 10.1073/pnas.0501456102. PubMed DOI PMC

Staab C.A., Ålander J., Brandt M., Lengqvist J., Morgenstern R., Grafström R.C., Höög J.O. Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors. Biochem. J. 2008;413:493–504. doi: 10.1042/BJ20071666. PubMed DOI

Staab C.A., Ålander J., Morgenstern R., Grafström R.C., Höög J.O. The Janus face of alcohol dehydrogenase 3. Chem. Biol. Interact. 2009;178:29–35. doi: 10.1016/j.cbi.2008.10.050. PubMed DOI

Williamson D.H., Lund P., Krebs H.A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 1967;103:514–527. doi: 10.1042/bj1030514. PubMed DOI PMC

Veech R.L., Guynn R., Veloso D. The Time-Course of the Effects of Ethanol on the Redox and Phosphorylation States of Rat Liver. Biochem. J. 1972;127:387–397. doi: 10.1042/bj1270387. PubMed DOI PMC

Hanson A.D., Gage D.A., Shachar-Hill Y. Plant one-carbon metabolism and its engineering. Trend Plant Sci. 2000;5:206–213. doi: 10.1016/S1360-1385(00)01599-5. PubMed DOI

Espunya M.C., Díaz M., Moreno-Romero J., Martínez M.C. Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development. Plant Cell Environ. 2006;29:1002–1011. doi: 10.1111/j.1365-3040.2006.01497.x. PubMed DOI

Engeland K., Höög J.O., Holmquist B., Estonius M., Jörnvall H., Vallee B.L. Mutation of Arg-115 of human class III alcohol dehydrogenase: A binding site required for formaldehyde dehydrogenase activity and fatty acid activation. Proc. Natl. Acad. Sci. USA. 1993;90:2491–2494. doi: 10.1073/pnas.90.6.2491. PubMed DOI PMC

Sanghani P.C., Bosron W.F., Hurley T.D. Human Glutathione-Dependent Formaldehyde Dehydrogenase. Structural Changes Associated with Ternary Complex Formation. Biochemistry. 2002;41:15189–15194. doi: 10.1021/bi026705q. PubMed DOI

Sanghani P.C., Robinson H., Bosron W.F., Hurley T.D. Human Glutathione-Dependent Formaldehyde Dehydrogenase. Structures of Apo, Binary, and Inhibitory Ternary Complexes. Biochemistry. 2002;41:10778–10786. doi: 10.1021/bi0257639. PubMed DOI

Kubienová L., Kopečný D., Tylichová M., Briozzo P., Skopalová J., Šebela M., Navrátil M., Tâche R., Luhová L., Barroso J.B., et al. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie. 2013;95:889–902. doi: 10.1016/j.biochi.2012.12.009. PubMed DOI

Xu S., Guerra D., Lee U., Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 2013;4:430. doi: 10.3389/fpls.2013.00430. PubMed DOI PMC

Sanghani P.C., Robinson H., Bennett-Lovsey R., Hurley T.D., Bosron W.F. Structure–function relationships in human Class III alcohol dehydrogenase (formaldehyde dehydrogenase) Chem. Biol. Interact. 2003;143–144:195–200. doi: 10.1016/S0009-2797(02)00203-X. PubMed DOI

Crotty J. Ph.D. Thesis. The University of Arizona; Tuscon, AZ, USA: 2009. Crystal Structures and Kinetics of S-Nitrosoglutathione Reductase from Arabidopsis thaliana and Human.

Guerra D., Ballard K., Truebridge I., Vierling E. S-nitrosation of Conserved Cysteines Modulates Activity and Stability of S-nitrosoglutathione Reductase (GSNOR) Biochemistry. 2016;55:2452–2464. doi: 10.1021/acs.biochem.5b01373. PubMed DOI PMC

Moulis J.M., Holmquist B., Vallee B.L. Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase. Biochemistry. 1991;30:5743–5749. doi: 10.1021/bi00237a016. PubMed DOI

Wagner F.W., Burger A.R., Vallee B.L. Kinetic properties of human liver alcohol dehydrogenase: Oxidation of alcohols by class I isoenzymes. Biochemistry. 1983;22:1857–1863. doi: 10.1021/bi00277a018. PubMed DOI

Achkor H., Díaz M., Fernández M.R., Biosca J.A., Parés X., Martínez M.C. Enhanced Formaldehyde Detoxification by Overexpression of Glutathione-Dependent Formaldehyde Dehydrogenase from Arabidopsis. Plant Physiol. 2003;132:2248–2255. doi: 10.1104/pp.103.022277. PubMed DOI PMC

Hedberg J.J., Griffiths W.J., Nilsson S.J.F., Höög J.O. Reduction of S-nitrosoglutathione by human alcohol dehydrogenase 3 is an irreversible reaction as analysed by electrospray mass spectrometry. Eur. J. Biochem. 2003;270:1249–1256. doi: 10.1046/j.1432-1033.2003.03486.x. PubMed DOI

Uotila L., Koivusalo M. Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch. Biochem. Biophys. 1979;196:33–45. doi: 10.1016/0003-9861(79)90548-4. PubMed DOI

Martínez M.C., Achkor H., Persson B., Fernández M.R., Shafqat J., Farrés J., Jornvall H., Parés X. Arabidopsis Formaldehyde Dehydrogenase. Eur. J. Biochem. 1996;241:849–857. PubMed

Dolferus R., Osterman J.C., Peacock W.J., Dennis E.S. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant ADH Enzymes. Genetics. 1997;146:1131–1141. PubMed PMC

Barroso J.B., Corpas F.J., Carreras A., Rodríguez-Serrano M., Esteban F.J., Fernández-Ocaña A., Chaki M., Romero-Puertas M.C., Valderrama R., Sandalio L.M., et al. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J. Exp. Bot. 2006;57:1785–1793. doi: 10.1093/jxb/erj175. PubMed DOI

Chaki M., Fernández-Ocaña A.M., Valderrama R., Carreras A., Esteban F.J., Luque F., Gómez-Rodríguez M.V., Begara-Morales J.C., Corpas F.J., Barroso J.B. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 2009;50:265–279. doi: 10.1093/pcp/pcn196. PubMed DOI

Chen R., Sun S., Wang C., Li Y., Liang Y., An F., Li C., Dong H., Yang X., Zhang J., et al. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 2009;19:1377–1387. doi: 10.1038/cr.2009.117. PubMed DOI

Airaki M., Sánchez-Moreno L., Leterrier M., Barroso J.B., Palma J.M., Corpas F.J. Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. Plant Cell Physiol. 2011;52:2006–2015. doi: 10.1093/pcp/pcr133. PubMed DOI

Tichá T., Činčalová L., Kopečný D., Sedlářová M., Kopečná M., Luhová L., Petřivalský M. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide. 2017;68:68–76. doi: 10.1016/j.niox.2016.12.002. PubMed DOI

Lindermayr C. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic. Biol. Med. 2018;122:110–115. doi: 10.1016/j.freeradbiomed.2017.11.027. PubMed DOI

Barroso J.B., Valderrama R., Corpas F.J. Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol. Plant. 2013;35:2635–2640. doi: 10.1007/s11738-013-1291-0. DOI

Frungillo L., de Oliveira J.F.P., Saviani E.E., Oliveira H.C., Martínez M.C., Salgado I. Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines. Biochim. Biophys. Acta. 2013;1827:239–247. doi: 10.1016/j.bbabio.2012.11.011. PubMed DOI

Tichá T., Lochman J., Činčalová L., Luhová L., Petřivalský M. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun. 2017;494:27–33. doi: 10.1016/j.bbrc.2017.10.090. PubMed DOI

Rustérucci C., Espunya M.C., Díaz M., Chabannes M., Martínez M.C. S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol. 2007;143:1282–1292. doi: 10.1104/pp.106.091686. PubMed DOI PMC

Lee U., Wie C., Fernandez B.O., Feelisch M., Vierling E. Modulation of Nitrosative Stress by S-Nitrosoglutathione Reductase Is Critical for Thermotolerance and Plant Growth in Arabidopsis. Plant Cell. 2008;20:786–802. doi: 10.1105/tpc.107.052647. PubMed DOI PMC

Kwon E., Feechan A., Yun B.W., Hwang B.H., Pallas J., Kang J.G., Loake G. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta. 2012;236:887–900. doi: 10.1007/s00425-012-1697-8. PubMed DOI

Shi Y.F., Wang D.L., Wang C., Culler A.H., Kreiser M.A., Suresh J., Cohen J.D., Pan J., Baker B., Liu J.Z. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. Mol. Plant. 2015;8:1350–1365. doi: 10.1016/j.molp.2015.04.008. PubMed DOI

Wang P., Du Y., Hou Y.J., Zhao Y., Hsu C.C., Yuan F., Zhu X., Tao W.A., Song C.P., Zhu J.K. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. USA. 2015;112:613–618. doi: 10.1073/pnas.1423481112. PubMed DOI PMC

Airaki M., Leterrier M., Valderrama R., Chaki M., Begara-Morales J.C., Barroso J.B., del Río L.A., Palma J., Corpas F.J. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann. Bot. 2015;116:679–693. doi: 10.1093/aob/mcv023. PubMed DOI PMC

Gong B., Wen D., Wang X., Wei M., Yang F., Li Y., Shi Q. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol. 2015;56:790–802. doi: 10.1093/pcp/pcv007. PubMed DOI

Salgado I., Martínez M.C., Oliveira H., Frungillo L. Nitric oxide signaling and homeostasis in plants: A focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses. Braz. J. Bot. 2013;36:89–98. doi: 10.1007/s40415-013-0013-6. DOI

Corpas F.J., Chaki M., Fernández-Ocaña A., Valderrama R., Palma J.M., Carreras A., Begara-Morales J.C., Airaki M., del Río L.A., Barroso J.B. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 2008;49:1711–1722. doi: 10.1093/pcp/pcn144. PubMed DOI

Chaki M., Valderrama R., Fernández-Ocaña A.M., Carreras A., Gómez-Rodríguez M.V., Pedrajas J.R., Begara-Morales J.C., Sánchez-Calvo B., Luque F., Leterrier M., et al. Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J. Exp. Bot. 2011;62:1803–1813. doi: 10.1093/jxb/erq358. PubMed DOI PMC

Airaki M., Leterrier M., Mateos R.M., Valderrama R., Chaki M., Barroso J.B., del Río L.A., Palma J.M., Corpas F.J. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012;35:281–295. doi: 10.1111/j.1365-3040.2011.02310.x. PubMed DOI

Ziogas V., Tanou G., Filippou P., Diamantidis G., Vasilakakis M., Fotopoulos V., Molassiotis A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol. Biochem. 2013;68:118–126. doi: 10.1016/j.plaphy.2013.04.004. PubMed DOI

Kubienová L., Tichá T., Jahnová J., Luhová L., Mieslerová B., Petřivalský M. Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta. 2014;239:139–146. doi: 10.1007/s00425-013-1970-5. PubMed DOI

Espunya M.C., De Michele R., Gómez-Cadenas A., Martínez M.C. S-nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J. Exp. Bot. 2012;63:3219–3227. doi: 10.1093/jxb/ers043. PubMed DOI PMC

Díaz M., Achkor H., Titarenko E., Martínez M.C. The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett. 2003;543:136–139. doi: 10.1016/S0014-5793(03)00426-5. PubMed DOI

Wünsche H., Baldwin I.T., Wu J. S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuate. J. Exp. Bot. 2011;62:4605–4616. doi: 10.1093/jxb/err171. PubMed DOI PMC

De Pinto M.C., Locato V., Sgobba A., Romero-Puertas M.C., Gadaleta C., Delledonne M., De Gara L. S-Nitrosylation of Ascorbate Peroxidase Is Part of Programmed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiol. 2013;163:1766–1775. doi: 10.1104/pp.113.222703. PubMed DOI PMC

Bai X.G., Chen J.H., Kong X.X., Todd C.D., Yang Y.P., Hu X.Y., Li D.Z. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic. Biol. Med. 2012;53:710–720. doi: 10.1016/j.freeradbiomed.2012.05.042. PubMed DOI

Sehrawat A., Deswal R. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J. Proteome Res. 2014;13:2599–2619. doi: 10.1021/pr500082u. PubMed DOI

Cheng T., Chen J., Ef A.A., Wang P., Wang G., Hu X., Shi J. Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta. 2015;242:1361–1390. doi: 10.1007/s00425-015-2374-5. PubMed DOI

Pető A., Lehotai N., Feigl G., Tugyi N., Ördög A., Gémes K., Tari I., Erdei L., Kolbert Z. Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep. 2013;32:1913–1923. doi: 10.1007/s00299-013-1503-5. PubMed DOI

Leterrier M., Airaki M., Palma J.M., Chaki M., Barroso J.B., Corpas F.J. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ. Pollut. 2012;166:136–143. doi: 10.1016/j.envpol.2012.03.012. PubMed DOI

Lehotai N., Kolbert Z., Pető A., Feigl G., Ördög A., Kumar D., Tari I., Erdei L. Selenite-induced hormonal and signaling mechanisms during root growth of Arabidopsis thaliana L. J. Exp. Bot. 2012;63:5677–5687. doi: 10.1093/jxb/ers222. PubMed DOI

Yang L., Tian D., Todd C.D., Luo Y., Hu X. Comparative Proteome Analyses Reveal that Nitric Oxide Is an Important Signal Molecule in the Response of Rice to Aluminum Toxicity. J. Proteome Res. 2013;12:1316–1330. doi: 10.1021/pr300971n. PubMed DOI

Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Drzewiecka K., Chmielowska-Bąk J., Abramowski D., Izbiańska K. Aluminum induces cross-resistance of potato to Phytophthora infestans. Planta. 2014;239:679–694. doi: 10.1007/s00425-013-2008-8. PubMed DOI PMC

Manai J., Gouia H., Corpas F.J. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J. Plant Physiol. 2014;171:1028–1035. doi: 10.1016/j.jplph.2014.03.012. PubMed DOI

Tanou G., Ziogas V., Belghazi M., Christou A., Filippou P., Job D., Fotopoulos V., Molassiotis A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 2014;37:864–885. doi: 10.1111/pce.12204. PubMed DOI

Zhou S., Jia L., Chu H., Wu D., Peng X., Liu X., Zhang J., Zhao J., Chen K., Zhao L. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-nitrosoglutathione Reductase via Direct Binding. PLoS Genet. 2016;12:e1006255. doi: 10.1371/journal.pgen.1006255. PubMed DOI PMC

Chen X., Tian D., Kong X., Chen Q., Abd-Allah E.F., Hu X., Jia A. The role of nitric oxide signaling in response to salt stress in Chlamydomonas reinhardtii. Planta. 2016;244:651–669. doi: 10.1007/s00425-016-2528-0. PubMed DOI

Signorelli S., Corpas F.J., Borsani O., Barroso J.B., Monza J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicas. Plant Sci. 2013;201–202:137–146. doi: 10.1016/j.plantsci.2012.12.004. PubMed DOI

Ma L., Yang L., Zhao J., Wei J., Kong X., Wang C., Zhang X., Yang Y., Hu X. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta. 2015;241:887–906. doi: 10.1007/s00425-014-2209-9. PubMed DOI

Kovacs I., Holzmeister C., Wirtz M., Geerlof A., Fröhlich T., Römling G., Kuruthukulangarakoola G.T., Linster E., Hell R., Arnold G.J., et al. ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms. Front. Plant Sci. 2016;7:1669. doi: 10.3389/fpls.2016.01669. PubMed DOI PMC

Linh L.H., Linh T.H., Xuan T.D., Ham L.H., Ismail A.M., Khanh T.D. Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int. J. Plant Genom. 2012;2012:949038. doi: 10.1155/2012/949038. PubMed DOI PMC

Bai X.G., Yang L., Tian M., Chen J., Shi J., Yang Y., Hu X. Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation. PLoS ONE. 2011;6:e20714. doi: 10.1371/journal.pone.0020714. PubMed DOI PMC

Malik S.I., Hussain A., Yun B.W., Spoel S.H., Loake G.J. GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci. 2011;181:540–544. doi: 10.1016/j.plantsci.2011.04.004. PubMed DOI

Janus Ł., Milczarek G., Arasimowicz-Jelonek M., Abramowski D., Billert H., Floryszak-Wieczorek J. Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. Plant Sci. 2013;211:23–34. doi: 10.1016/j.plantsci.2013.06.007. PubMed DOI

Thalineau E., Truong H.N., Berger A., Fournier C., Boscari A., Wendehenne D., Jeandroz S. Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity. Front. Plant Sci. 2016;7:472. doi: 10.3389/fpls.2016.00472. PubMed DOI PMC

Kneeshaw S., Gelineau S., Tada Y., Loake G.J., Spoel S.H. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity. Mol. Cell. 2014;56:153–162. doi: 10.1016/j.molcel.2014.08.003. PubMed DOI

Ghanta S., Bhattacharyya D., Sinha R., Banerjee A., Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta. 2011;233:895–910. doi: 10.1007/s00425-011-1349-4. PubMed DOI

Kovacs I., Durner J., Lindermayr C. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. 2015;208:860–872. doi: 10.1111/nph.13502. PubMed DOI

Yun B.W., Skelly M.J., Yin M., Yu M., Mun B.G., Lee S.U., Hussain A., Spoel S.H., Loake G.J. Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol. 2016;211:516–526. doi: 10.1111/nph.13903. PubMed DOI

Zheng W., Miao K., Liu Y., Zhao Y., Zhang M., Pan S., Dai Y. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for upregulating their production. Appl. Microbiol. Biotechnol. 2010;87:1237–1254. doi: 10.1007/s00253-010-2682-4. PubMed DOI

Zhao Y., He M., Ding J., Xi Q., Loake G.J., Zheng W. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Sci. Rep. 2016;6:37601. doi: 10.1038/srep37601. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace