Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31438648
PubMed Central
PMC6788187
DOI
10.3390/biom9090393
PII: biom9090393
Knihovny.cz E-zdroje
- Klíčová slova
- S-nitrosation, S-nitrosoglutathione reductase, Solanum habrochaites, Solanum lycopersicum, abiotic stress, cadmium, nitric oxide, reactive oxygen species, root growth, salinity,
- MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- askorbátperoxidasa metabolismus MeSH
- benzamidy chemie metabolismus farmakologie MeSH
- chlorid sodný farmakologie MeSH
- fyziologický stres MeSH
- kadmium toxicita MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- NADPH-oxidasy metabolismus MeSH
- nitrosace MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- pyrroly chemie metabolismus farmakologie MeSH
- reaktivní formy dusíku chemie metabolismus MeSH
- reaktivní formy kyslíku chemie metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny metabolismus MeSH
- S-nitrosoglutathion farmakologie MeSH
- S-nitrosothioly metabolismus MeSH
- Solanum lycopersicum účinky léků růst a vývoj metabolismus MeSH
- Solanum růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- askorbátperoxidasa MeSH
- benzamidy MeSH
- chlorid sodný MeSH
- formaldehyde dehydrogenase, glutathione-independent MeSH Prohlížeč
- kadmium MeSH
- N6022 MeSH Prohlížeč
- NADPH-oxidasy MeSH
- oxid dusnatý MeSH
- peroxid vodíku MeSH
- pyrroly MeSH
- reaktivní formy dusíku MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
- S-nitrosoglutathion MeSH
- S-nitrosothioly MeSH
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
Zobrazit více v PubMed
Kolbert Z. Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol. Biochem. 2016;101:149–161. doi: 10.1016/j.plaphy.2016.02.003. PubMed DOI
Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI
Yu M., Lamattina L., Spoel S.H., Loake G.J. Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytol. 2014;202:1142–1156. doi: 10.1111/nph.12739. PubMed DOI
Yun B.W., Feechan A., Yin M., Saidi N.B., Le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Spoel S.H., et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478:264–268. doi: 10.1038/nature10427. PubMed DOI
Groß F., Durner J., Gaupels F. Nitric oxide, antioxidant and prooxidants in plant defence responses. Front. Plant Sci. 2013 doi: 10.3389/fpls.2013.00419. PubMed DOI PMC
Beligni M.V., Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta. 1999;208:337–344. doi: 10.1007/s004250050567. DOI
Fares A., Rossignol M., Peltier J.B. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem. Biophy. Res. Comm. 2011;416:331–336. doi: 10.1016/j.bbrc.2011.11.036. PubMed DOI
Lin A., Wang Y., Tang J., Xue P., Li C., Liu L., Hu B., Yang F., Loake G.J., Chu C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 2012;158:451–464. doi: 10.1104/pp.111.184531. PubMed DOI PMC
Kato H., Takemoto D., Kawakita K. Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol. Plant. 2013;148:371–386. doi: 10.1111/j.1399-3054.2012.01684.x. PubMed DOI
Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Valderrama R., Mata-Pérez C., López-Jaramillo J., Padilla M.N., Carreras A., Corpas F.J., Barroso J.B. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 2014;65:527–538. doi: 10.1093/jxb/ert396. PubMed DOI PMC
Cheng T., Chen J., Abd Allah E.F., Wang P., Wang G., Hu X., Shi J. Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta. 2015;242:1361–1390. doi: 10.1007/s00425-015-2374-5. PubMed DOI
de Pinto M.C., Locato V., Sgobba A., Romero-Puertas M.C., Gadaleta C., Delledonne M., De Gara L. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol. 2013;163:1766–1775. doi: 10.1104/pp.113.222703. PubMed DOI PMC
Correa-Aragunde N., Foresi N., Delledonne M., Lamattina L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J. Exp. Bot. 2013;64:3339–3349. doi: 10.1093/jxb/ert172. PubMed DOI
Yang H., Mu J., Chen L., Feng J., Hu J., Li L. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol. 2015;167:1604–1615. doi: 10.1104/pp.114.255216. PubMed DOI PMC
Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Mata-Pérez C., Valderrama R., Padilla M.N., López-Jaramillo J., Luque F., Corpas F.J., Barroso J.B. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J. Exp. Bot. 2015;66:5983–5996. doi: 10.1093/jxb/erv306. PubMed DOI PMC
Feechan A., Kwon E., Yun B.W., Wang Y., Pallas J.A., Loake G.J. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA. 2005;102:8054–8059. doi: 10.1073/pnas.0501456102. PubMed DOI PMC
Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410:490–494. doi: 10.1038/35068596. PubMed DOI
Lee U., Wie C., Fernandez B.O., Feelisch M., Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell. 2008;20:786–802. doi: 10.1105/tpc.107.052647. PubMed DOI PMC
Leterrier M., Chaki M., Airaki M., Valderrama R., Palma J.M., Barroso J.B., Corpas F.J. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal. Behav. 2011;6:789–793. doi: 10.4161/psb.6.6.15161. PubMed DOI PMC
Airaki M., Leterrier M., Mateos R.M., Valderrama R., Chaki M., Barroso J.B., Del Río L.A., Palma J.M., Corpas F.J. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012;35:281–295. doi: 10.1111/j.1365-3040.2011.02310.x. PubMed DOI
Kwon E., Feechan A., Yun B.W., Hwang B.H., Pallas J.A., Kang J.G., Loake G.J. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta. 2012;236:887–900. doi: 10.1007/s00425-012-1697-8. PubMed DOI
Kubienová L., Kopečný D., Tylichová M., Briozzo P., Skopalová J., Šebela M., Navrátil M., Tâche R., Luhová L., Barroso J.B., et al. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie. 2013;95:889–902. doi: 10.1016/j.biochi.2012.12.009. PubMed DOI
Xu S., Guerra D., Lee U., Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 2013 doi: 10.3389/fpls.2013.00430. PubMed DOI PMC
Jahnová J., Luhová L., Petřivalský M. S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants. 2019;8:48. doi: 10.3390/plants8020048. PubMed DOI PMC
Camejo D., Romero-Puertas M.C., Rodríguez-Serrano M., Sandalio L.M., Lázaro J.J., Jiménez A., Sevilla F. Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J. Proteom. 2013;79:87–99. doi: 10.1016/j.jprot.2012.12.003. PubMed DOI
Gong B., Wen D., Wang X., Wei M., Yang F., Li Y., Shi Q. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol. 2015;56:790–802. doi: 10.1093/pcp/pcv007. PubMed DOI
Yang L., Tian D., Todd C.D., Luo Y., Hu X. Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J. Proteom. Res. 2013;12:1316–1330. doi: 10.1021/pr300971n. PubMed DOI
Frungillo L., Skelly M.J., Loake G.J., Spoel S.H., Salgado I. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat. Commun. 2014 doi: 10.1038/ncomms6401. PubMed DOI PMC
Yang Y., Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018;217:523–539. doi: 10.1111/nph.14920. PubMed DOI
Dutta S., Mitra M., Agarwal P., Mahapatra K., De S., Sett U., Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal. Behav. 2018 doi: 10.1080/15592324.2018.1460048. PubMed DOI PMC
Mlíčková K., Luhová L., Lebeda A., Mieslerová B., Peč P. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol. Biochem. 2004;42:753–761. doi: 10.1016/j.plaphy.2004.07.007. PubMed DOI
Tománková K., Luhová L., Petřivalský M., Peč P., Lebeda A. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol Mol. Plant Pathol. 2006;68:22–32. doi: 10.1016/j.pmpp.2006.05.005. DOI
Piterková J., Hofman J., Mieslerová B., Sedlářová M., Luhová L., Lebeda A., Petřivalský M. Dual role of nitric oxide in Solanum spp.-Oidium neolycopersici interactions. Environ. Exp. Bot. 2011;74:37–44. doi: 10.1016/j.envexpbot.2011.04.016. DOI
Tichá T., Sedlářová M., Činčalová L., Trojanová Z.D., Mieslerová B., Lebeda A., Luhová L., Petřivalský M. Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Planta. 2018;247:1203–1215. doi: 10.1007/s00425-018-2858-1. PubMed DOI
Grandillo S., Chetelat R., Knapp S., Spooner D., Peralta I., Cammareri M., Ercolano M.R. Wild Crop Relatives: Genomic and Breeding Resources. Springer; Berlin/Heidelberg, Germany: 2011. Solanum sect. Lycopersicon; pp. 129–215.
Venema J.H., Dijk B.E., Bax J.M., van Hasselt P.R., Elzenga J.T.M. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 2008;63:359–367. doi: 10.1016/j.envexpbot.2007.12.015. DOI
Green L.S., Lawrence E.C., Patton A.K., Sun X., Rosenthal G.J., Richards J.P. Mechanism of inhibition for N6022, a first-in-class drug targeting S-nitrosoglutathione reductase. Biochemistry. 2012;51:2157–2168. doi: 10.1021/bi201785u. PubMed DOI
Moore K.P., Mani A.R. Measurement of protein nitration and S-nitrosothiol formation in biology and medicine. Meth. Enzymol. 2002;359:256–268. PubMed
Gow A., Doctor A., Mannick J., Gaston B. S-nitrosothiol measurements in biological systems. J. Chromatogr. 2007;851:140–151. doi: 10.1016/j.jchromb.2007.01.052. PubMed DOI PMC
Bradford M.M. Rapid and sensitive method for quantitation of mikrogram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Kubienová L., Tichá T., Jahnová J., Luhová L., Mieslerová B., Petřivalský M. Effect of abiotic stress stimuli on S nitrosoglutathione reductase in plants. Planta. 2014;239:139–146. doi: 10.1007/s00425-013-1970-5. PubMed DOI
Kaundal A., Rojas C.M., Mysore K.S. Measurement of NADPH oxidase activity in plants. Bio-Protocol. 2012 doi: 10.21769/BioProtoc.278. DOI
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Lindermayr C., Saalbach G., Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005;137:921–930. doi: 10.1104/pp.104.058719. PubMed DOI PMC
Corpas F.J., Carreras A., Esteban F.J., Chaki M., Valderrama R., Del Río L.A., Barroso J.B. Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Meth. Enzymol. 2008;437:561–574. PubMed
Correa-Aragunde N., Graziano C.M., Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta. 2004;218:900–905. doi: 10.1007/s00425-003-1172-7. PubMed DOI
Pagnussat G.C., Simontacchi M., Puntarulo S., Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol. 2002;129:954–956. doi: 10.1104/pp.004036. PubMed DOI PMC
Fernández-Marcos M., Sanz L., Lewis D.R., Muday G.K., Lorenzo O. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PINFORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. USA. 2011;108:18506–18511. doi: 10.1073/pnas.1108644108. PubMed DOI PMC
Fernández-Marcos M., Sanz L., Lorenzo O. Nitric oxide: An emerging regulator of cell elongation during primary root growth. Plant Signal. Behav. 2012;7:196–200. doi: 10.4161/psb.18895. PubMed DOI PMC
Tichá T., Činčalová L., Kopečný D., Sedlářová M., Kopečná M., Luhová L., Petřivalský M. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide. 2017;68:68–76. doi: 10.1016/j.niox.2016.12.002. PubMed DOI
Chen R., Sun S., Wang C., Li Y., Liang Y., An F. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 2009;19:1377–1387. doi: 10.1038/cr.2009.117. PubMed DOI
Holzmeister C., Fröhlich A., Sarioglu H., Bauer N., Durner J., Lindermayr C. Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO homeostasis. Proteomics. 2011;11:1664–1683. doi: 10.1002/pmic.201000652. PubMed DOI
Shi Y.F., Wang D.L., Wang C., Culler A.H., Kreiser M.A., Suresh J., Cohen J.D., Pan J., Baker B., Liu J.Z. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. Mol. Plant. 2015;8:1350–1365. doi: 10.1016/j.molp.2015.04.008. PubMed DOI
Liu H.Y., Yu X., Cui D.Y., Sun M.H., Sun W.N., Tang Z.C. The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res. 2007;17:638–649. doi: 10.1038/cr.2007.34. PubMed DOI
Zandonadi D.B., Santos M.P., Dobbss L.B., Olivares F.L., Canellas L.P., Binzel M.L., Okorokova-Facanha A.L., Facanha A.R. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta. 2010;231:1026–1035. doi: 10.1007/s00425-010-1106-0. PubMed DOI
Kopyra M., Gwozdz E.A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 2003;41:1011–1017. doi: 10.1016/j.plaphy.2003.09.003. DOI
Kong J., Dong Y., Song Y., Bai X., Tian X., Xu L., Liu S., He Z. Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.) J. Plant Growth Regul. 2016;35:31–43. doi: 10.1007/s00344-015-9504-y. DOI
Piterková J., Luhová L., Hofman J., Turečková V., Novák O., Petřivalský M., Fellner M. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Ann. Bot. 2012;110:767–776. doi: 10.1093/aob/mcs141. PubMed DOI PMC
Goldstein S., Russo A., Samuni A. Reactions of PTIO and carboxy-PTIO with ·NO, ·NO2, and O2−. J. Biol. Chem. 2003;278:50949–50955. doi: 10.1074/jbc.M308317200. PubMed DOI
Foreman J., Demidchik V., Bothwell J.H., Mylona P. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–446. doi: 10.1038/nature01485. PubMed DOI
Delledonne M., Xia Y., Dixon R.A., Lamb C. Nitric oxide functions as a signal in plant disease resistence. Nature. 1998;394:585–588. doi: 10.1038/29087. PubMed DOI
Wendehenne D., Durner J., Klessig D.F. Nitric oxide: A new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 2004;7:449–455. doi: 10.1016/j.pbi.2004.04.002. PubMed DOI
Tada Y., Mori T., Shinogi T., Yao N., Takahashi S., Betsuyaku S., Mayama S. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Mol. Plant Microbe Inter. 2004;17:245–253. doi: 10.1094/MPMI.2004.17.3.245. PubMed DOI
Chaki M., Fernández-Ocana A.M., Valderrama R., Carreras A., Esteban F.J., Luque F., Gómez-Rodríguez M.V., Begara-Morales J.C., Corpas F.J., Barroso J.B. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 2009;50:265–279. doi: 10.1093/pcp/pcn196. PubMed DOI
Delledonne M., Zeier J., Marocco A., Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA. 2001;98:13454–13459. doi: 10.1073/pnas.231178298. PubMed DOI PMC
Farnese F.S., Menezes-Silva P.E., Gusman G.S., Oliveira J.A. When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 2016 doi: 10.3389/fpls.2016.00471. PubMed DOI PMC
Marino D., Dunand C., Puppo A., Pauly N. A burst of plant NADPH oxidases. Trend. Plant Sci. 2012;17:9–15. doi: 10.1016/j.tplants.2011.10.001. PubMed DOI
Clark D., Durner J., Navarre D.A., Klessig D.F. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol. Plant Microbe Interact. 2000;13:1380–1384. doi: 10.1094/MPMI.2000.13.12.1380. PubMed DOI
Keyster M., Klein A., Egbich I., Jacobs A., Ludidi N. Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signal. Behav. 2011;6:956–961. doi: 10.4161/psb.6.7.14879. PubMed DOI PMC
Bai X., Yang L., Yang Y., Ahmad P., Yang Y., Hu X. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J. Proteom. Res. 2012;10:4349–4364. doi: 10.1021/pr200333f. PubMed DOI
Martínez-Ruiz A., Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: Convergences and divergences. Cardiovasc. Res. 2007;75:220–228. doi: 10.1016/j.cardiores.2007.03.016. PubMed DOI
Kitajima S. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-Cys peroxiredoxin. Photochem. Photobiol. 2008;84:1404–1409. doi: 10.1111/j.1751-1097.2008.00452.x. PubMed DOI
Gould K.S., Klinguer A., Pugin A., Wendehenne D. Nitric oxide production in tobacco leaf cells: A generalized stress response? Plant Cell Environ. 2003;26:1851–1862. doi: 10.1046/j.1365-3040.2003.01101.x. DOI
Corpas F.J., Hayashi M., Mano S., Nishimura M., Barroso J.B. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol. 2009;151:2083–2094. doi: 10.1104/pp.109.146100. PubMed DOI PMC
David A., Yadav S., Bhatla S.C. Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiol. Plant. 2010;140:342–354. doi: 10.1111/j.1399-3054.2010.01408.x. PubMed DOI
Valderrama R., Corpas F.J., Carreras A., Fernández-Ocaña A., Chaki M., Luque F., Gómez-Rodríguez M.V., Colmenero-Varea P., Del Río L.A., Barroso J.B. Nitrosative stress in plants. FEBS Lett. 2007;581:453–461. doi: 10.1016/j.febslet.2007.01.006. PubMed DOI
Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009;60:795–804. doi: 10.1111/j.1365-313X.2009.04000.x. PubMed DOI
Tanou G., Filippou P., Belghazi M., Job D., Diamantidis G., Fotopoulos V. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J. 2012;72:585–599. doi: 10.1111/j.1365-313X.2012.05100.x. PubMed DOI
Bandeoglu E., Eyidogan F., Yücel M., Öktem H.A. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 2004;42:69–77. doi: 10.1023/B:GROW.0000014891.35427.7b. DOI
Gueta-Dahan Y., Yaniv Z., Zilinskas B.A., Ben-Hayyim G. Salt and oxidative stress: Similar and specific responses and their relation to salt tolerance in citrus. Planta. 1997;203:460–469. doi: 10.1007/s004250050215. PubMed DOI
Molina A., Bueno P., Marín M.C., Rodríguez-Rosales M.P., Belver A., Venema K., Donaire J.P. Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol. 2002;156:409–415. doi: 10.1046/j.1469-8137.2002.00527.x. PubMed DOI
Manai J., Gouiab H., Corpas F.J. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J. Plant Physiol. 2014;171:1028–1035. doi: 10.1016/j.jplph.2014.03.012. PubMed DOI
Kopyra M., Stachoń-Wilk M., Gwozdz E.A. Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol. Plant. 2006;28:525–536. doi: 10.1007/s11738-006-0048-4. DOI
Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Deckert J., Rucińska-Sobkowiak R., Gzyl J., Pawlak-Sprada S., Gwóźdź E.A. Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol. Biochem. 2012;58:124–134. doi: 10.1016/j.plaphy.2012.06.018. PubMed DOI
Piterková J., Luhová L., Navrátilová B., Sedlářová M., Petřivalský M. Early and long-term responses of cucumber cells to high cadmium concentration are modulated by nitric oxide and reactive oxygen species. Acta Physiol. Plant. 2015 doi: 10.1007/s11738-014-1756-9. DOI
Singh H.P., Batish D.R., Kaur G., Arora K., Kohli R.K. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 2008;63:158–167. doi: 10.1016/j.envexpbot.2007.12.005. DOI
Singh H.P., Kaur S., Batish D.R., Sharma V.P., Sharma N., Kohli R.K. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice) Nitric Oxide. 2009;20:289–297. doi: 10.1016/j.niox.2009.02.004. PubMed DOI
Farnese F.S., Oliveira J.A., Paiva E., Menezes-Silva P.E., da Silva A.A., Campos F.V., Ribeiro C. The Involvement of Nitric Oxide in Integration of Plant Physiological and Ultrastructural Adjustments in Response to Arsenic. Front. Plant Sci. 2017 doi: 10.3389/fpls.2017.00516. PubMed DOI PMC
Ismail G.S.M. Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol. Plant. 2012;34:1303–1311. doi: 10.1007/s11738-012-0927-9. DOI
Piterková J., Petřivalský M., Luhová L., Mieslerová B., Sedlářová M., Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol. Plant Pathol. 2009;10:501–513. doi: 10.1111/j.1364-3703.2009.00551.x. PubMed DOI PMC
Ortega-Galisteo A.P., Rodríguez-Serrano M., Pazmiño D.M., Gupta D.K., Sandalio L.M., Romero-Puertas M.C. S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: Changes under abiotic stress. J. Exp. Bot. 2012;63:2089–2103. doi: 10.1093/jxb/err414. PubMed DOI PMC
Barroso J.B., Corpas F.J., Carreras A., Rodríguez-Serrano M., Esteban F.J., Fernández-Ocaña A., Chaki M., Romero-Puertas M.C., Valderrama R., Sandalio L.M., et al. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J. Exp. Bot. 2006;57:1785–1793. doi: 10.1093/jxb/erj175. PubMed DOI
Leterrier M., Airaki M., Palma J.M., Chaki M., Barroso J.B., Corpas F.J. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ. Pollut. 2012;166:136–143. doi: 10.1016/j.envpol.2012.03.012. PubMed DOI
Rodríguez-Serrano M.A., Romero-Puertas M.C., Zabalza A.N.A., Corpas F.J., Gómez M., Del Río L.A., Sandalio L.M. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006;29:1532–1544. doi: 10.1111/j.1365-3040.2006.01531.x. PubMed DOI
Corpas F.J., Del Río L.A., Barroso J.B. Post-translational modifications mediated by reactive nitrogen species: Nitrosative stress responses or components of signal transduction pathways? Plant Signal. Behav. 2008;3:301–303. doi: 10.4161/psb.3.5.5277. PubMed DOI PMC