Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
501/12/0590
Grantová Agentura České Republiky
IGA_PrF_2017_016
Univerzita Palackého v Olomouci
IGA_PrF_2017_001
Univerzita Palackého v Olomouci
IGA_PrF_2018_001
Univerzita Palackého v Olomouci
MSM 6198959215
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29417270
DOI
10.1007/s00425-018-2858-1
PII: 10.1007/s00425-018-2858-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bremia lactucae, Golovinomyces cichoracearum, Lettuce downy mildew, Lettuce powdery mildew, Nitric oxide, Pseudoidium neolycopersici,
- MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- konfokální mikroskopie MeSH
- nemoci rostlin mikrobiologie MeSH
- odolnost vůči nemocem fyziologie MeSH
- oomycety patogenita MeSH
- polymerázová řetězová reakce MeSH
- regulace genové exprese u rostlin MeSH
- S-nitrosothioly metabolismus MeSH
- salát (hlávkový) enzymologie fyziologie MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- formaldehyde dehydrogenase, glutathione-independent MeSH Prohlížeč
- S-nitrosothioly MeSH
Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.
Zobrazit více v PubMed
Plant Sci. 2013 Jun;207:57-65 PubMed
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 May 15;851(1-2):140-51 PubMed
J Exp Bot. 2006;57(8):1785-93 PubMed
Biochimie. 2013 Apr;95(4):889-902 PubMed
Mol Plant. 2015 Apr;8(4):506-20 PubMed
Plant Sci. 2011 Nov;181(5):540-4 PubMed
Curr Opin Plant Biol. 1999 Oct;2(5):369-74 PubMed
Planta. 2014 Jan;239(1):139-46 PubMed
Mol Plant Pathol. 2009 Jul;10(4):501-13 PubMed
Plant Cell. 2008 Mar;20(3):786-802 PubMed
Front Plant Sci. 2016 Feb 16;7:152 PubMed
Nature. 2001 Mar 22;410(6827):490-4 PubMed
AoB Plants. 2013;5:pls052 PubMed
Nature. 2011 Oct 13;478(7368):264-8 PubMed
FEBS Lett. 2003 May 22;543(1-3):136-9 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Front Plant Sci. 2016 Mar 04;7:252 PubMed
Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9 PubMed
Science. 2008 Aug 15;321(5891):952-6 PubMed
New Phytol. 2016 Jul;211(2):516-26 PubMed
J Exp Bot. 2011 Mar;62(6):1803-13 PubMed
J Exp Bot. 2008;59(2):147-54 PubMed
Plant Physiol. 2007 Mar;143(3):1282-92 PubMed
Nat Commun. 2014 Nov 11;5:5401 PubMed
Front Plant Sci. 2013 Nov 05;4:430 PubMed
Plant Physiol Biochem. 2007 Aug;45(8):607-16 PubMed
Front Plant Sci. 2013 May 08;4:126 PubMed
Plant Cell Physiol. 2015 Apr;56(4):790-802 PubMed
J Exp Bot. 2011 Aug;62(13):4605-16 PubMed
Front Chem. 2015 Jan 07;2:114 PubMed
Plant Signal Behav. 2011 Jun;6(6):789-93 PubMed
Plant Sci. 2013 Oct;211:23-34 PubMed
Protoplasma. 2015 Jan;252(1):307-19 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
J Exp Bot. 2012 May;63(8):3219-27 PubMed
New Phytol. 2014 Jun;202(4):1142-56 PubMed
Methods Enzymol. 2002;359:256-68 PubMed
Plant Cell Physiol. 2009 Feb;50(2):265-79 PubMed
Nitric Oxide. 2017 Aug 1;68:68-76 PubMed
Front Plant Sci. 2013 Sep 09;4:351 PubMed
Environ Pollut. 2012 Jul;166:136-43 PubMed