Immunohistochemical evaluation of tissues following bone implant extraction from upper and lower limb
Jazyk angličtina Země Španělsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008441
Operational Programme Research, Development and Education financed by the European Union and from the state budget of the Czech Republic
RVO-FNOs/2023
RVO-FNOs/2023
PubMed
36928509
DOI
10.14670/hh-18-606
PII: HH-18-606
Knihovny.cz E-zdroje
- MeSH
- dolní končetina MeSH
- hojení fraktur * MeSH
- kathepsin K MeSH
- kosti a kostní tkáň * MeSH
- kyselá fosfatasa rezistentní k tartarátu MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kathepsin K MeSH
- kyselá fosfatasa rezistentní k tartarátu MeSH
Fractured bones can regenerate and restore their biological and mechanical properties to the state prior to the damage. In some cases, however, the treatment of fractures requires the use of supportive implants. For bone healing, three processes are essential: the inflammatory phase, the repair phase and the remodelling phase. A proper course of the first - inflammatory - stage is important to ensure a successful fracture healing process. In our study, we evaluated tissue samples immunohistochemically from the area surrounding the fractures of upper and lower limbs (bone tissue, soft tissue, and the implant-adhering tissue) for markers: CD11b, CD15, CD34, CD44, CD68, Cathepsin K, and TRAcP that are linked to the aforementioned phases. In soft tissue, higher expressions of CD68, CD34, CD15 and CD11b markers were observed than in other locations. TRAcP and Cathepsin K markers were more expressed in the bone tissue, while pigmentation, necrosis and calcification were more observed in the implant-adhering tissue. Since even the implant materials commonly perceived as inert elicit the observed inflammatory responses, new surface treatments and materials need to be developed.
Department of Trauma Surgery University Hospital Ostrava Ostrava Czech Republic
Faculty of Mining and Geology VŠB Technical University of Ostrava Ostrava Czech Republic
Institute of Emergency Medicine Faculty of Medicine University of Ostrava Ostrava Czech Republic
Medin a s Nové Město na Moravě Czech Republic
Nanotechnology Centre CEET VŠB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Baht G., Vi L. and Alman B.A. (2018). The role of the immune cells in fracture healing. Curr. Osteopor. Rep. 16, 138-145. PubMed PMC
Eger M., Hiram-Bab S., Liron T., Sterer N., Carmi Y., Kohavi D. and Gabet Y. (2018). Mechanism and prevention of titanium particleinduced inflammation and osteolysis. Front. Immunol. 9, 2963. PubMed PMC
Gallo J., Raska M., Kriegova E. and Goodman S.B. (2017). Inflammation and its resolution and the musculoskeletal system. J. Orthop. Transl. 10, 52-67. PubMed PMC
Givissis P.K., Stavridis S.I., Papagelopoulos P.J., Antonarakos P.D. and Christodoulou A.G. (2010). Delayed foreign-body reaction to absorbable implants in metacarpal fracture treatment. Clin. Orthop. Relat. Res. 468, 3377-3383. PubMed PMC
Goodman S.B. and Gallo J. (2019). Periprosthetic osteolysis: Mechanism, prevention and treatment. J. Clin. Med. 8, 2091. PubMed PMC
Goodman S.B., Pajarinen J., Yao Z. and Lin T. (2019). Inflammation and bone repair: From particle disease to tissue regeneration. Fron. Bioeng. Biotechnol. 7, 230. PubMed PMC
Goodman S.B., Gallo J., Gibon E. and Takagi M. (2020). Diagnosis and management of implant debris-associated inflammation. Exp. Rev. Med. Dev. 17, 41-56. PubMed PMC
Gu Q., Yang H and, Shi Q. (2017). Macrophages and bone inflammation. J. Orthop. Transl. 10, 86-93. PubMed PMC
Jonitz-Heincke A., Tillmann J., Klinder A., Krueger S., Kretzer J.P., Høl P.J., Paulus A.C. and Bader R. (2017). The impact of metal ion exposure on the cellular behavior of human osteoblasts and PBMCs: In vitro analyses of osteolytic processes. Materials 10, 734. PubMed PMC
Jonitz-Heincke A., Sellin M.L., Seyfarth A., Peters K., Mueller-Hilke B., Fiedler T., Bader R. and Klinder A. (2019). Analysis of cellular activity and induction of inflammation in response to short-term exposure to cobalt and chromium ions in mature human osteoblasts. Materials 12, 2771. PubMed PMC
Kataoka M., Torisu T., Tsumura H., Hirayama T. and Fujikawa Y. (2000). Role of multinuclear cells in granulation tissue in osteomyelitis: Immunohistochemistry in 66 patients. Acta. Orthop. Scand. 71, 414-418. PubMed
Klinder A., Seyfarth A., Hansmann D., Bader R. and Jonitz-Heincke A. (2018). Inflammatory response of human peripheral blood mononuclear cells and osteoblasts incubated with metallic and ceramic submicron particles. Front. Immunol. 9, 831. PubMed PMC
Lin T., Tamaki Y., Pajarinen J., Waters H.A., Woo D.K., Yao Z. and Goodman S.B. (2014). Chronic inflammation in biomaterial induced periprosthetic osteolysis: NF-kB as a therapeutic target. Acta Biomater. 10, 1-10. PubMed PMC
Liu G., Guo T., Zhang Y., Liu N., Chen J., Chen J., Zhang J. and Zhao J. (2017). Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthetic osteolysis after total hip replacement. APMIS 125, 565-578. PubMed
Longhofer L.K., Chong A., Strong N.M., Wooley P.H. and Yang S.Y. (2017). Specific material effects of wear-particle-induced inflammation and osteolysis at the bone-implant interface: A rat model. J. Orthop. Transl. 8, 5-11. PubMed PMC
Marsell R. and Einhorn T.A. (2011). The biology of fracture healing. Injury 42, 551-555. PubMed PMC
Maruyama M., Rhee C., Utsunomiya T., Zhang N., Ueno M., Yao Z. and Goodman S.B. (2020). Modulation of the inflammatory response and bone healing. Front. Endocr. 11, 386. PubMed PMC
Marzona L. and Pavolini B. (2009). Play and players in bone fracture healing match. Clin. Cas. Min. Bo. Metabol. 6, 159-162. PubMed PMC
Pajarinen J., Gallo J., Takagi M. and Goodman S.B. (2018). Particle disease really does exist (An evidence-based rebuttal to Dr. Mjöberg´s opinion letter). A. Orthop. 89, 133-136. PubMed PMC
Panteli M., Pountos I., Jones E. and Giannoudis P.V. (2015). Biological and molecular profile of fracture non-union tissue: current insights. J. Cell. Mol. Med. 19, 685-713. PubMed PMC
Park J.K., Rosen A., Saffitz J.E., Asimaki A., Litovsky S.H., MackeyBojack S.M. and Halushka M. (2013). Expression of cathepsin K and tartrate-resistant acid phosphatase is not confined to osteoclasts but is a general feature of multinucleated giant cells: systemic analysis. Rheumatology 52, 1529-1533. PubMed
Sheikh Z., Brooks P.J., Barzilay O., Fine N. and Glogauer M. (2015). Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 8, 5671-5701. PubMed PMC
Vaculova J., Gallo J., Hurnik P., Motyka O., Goodman S.B. and Dvoracková J. (2017). Low intrapatient variability of histomorfological findings in periprosthetic tissues from revised metal/ceramic on polyethylene joint arthroplasties. Soc. Biomater. 106, 2008-2018. PubMed
Vos D.I., Verhofstad M.H.J., Hanson B., Graaf Y. and Werken Ch. (2012). Clinical outcome of implant removal after fracture healing. Design of a prospective multicentre clinical cohort study. BMC Musculoskel. Dis. 13, 147. PubMed PMC
Watanabe Y., Kondo N., Fukuhara T., Imai N., Yamada M. and Endo N. (2021). Case report: Histopathological finding of microdamage accumulation in atypical subtrochanteric femoral fracture. C. Rep. Ortho. 2021, 6624414. PubMed PMC