Long-term fungal inoculation of Ficus sycomorus and Tectona grandis woods with Aspergillus flavus and Penicillium chrysogenum

. 2023 Jun 28 ; 13 (1) : 10453. [epub] 20230628

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37380674
Odkazy

PubMed 37380674
PubMed Central PMC10307807
DOI 10.1038/s41598-023-37479-1
PII: 10.1038/s41598-023-37479-1
Knihovny.cz E-zdroje

In the current study, two molds, Aspergillus flavus (ACC# LC325160) and Penicillium chrysogenum (ACC# LC325162) were inoculated into two types of wood to be examined using scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and computerized tomography (CT) scanning. Ficus sycomorus, a non-durable wood, and Tectona grandis, a durable wood, were the two wood blocks chosen, and they were inoculated with the two molds and incubated for 36 months at an ambient temperature of 27 ± 2 °C and 70 ± 5% relative humidity (RH). The surface and a 5-mm depth of inoculated wood blocks were histologically evaluated using SEM and CT images. The results showed that A. flavus and P. chrysogenum grew enormously on and inside of F. sycomorus wood blocks, but T. grandis wood displayed resistance to mold growth. The atomic percentages of C declined from 61.69% (control) to 59.33% in F. sycomorus wood samples inoculated with A. flavus while O increased from 37.81 to 39.59%. P. chrysogenum caused the C and O atomic percentages in F. sycomorus wood to drop to 58.43%, and 26.34%, respectively. C with atomic percentages in Teak wood's C content fell from 70.85 to 54.16%, and 40.89%, after being inoculated with A. flavus and P. chrysogenum. The O atomic percentage rose from 28.78 to 45.19% and 52.43%, when inoculated with A. flavus and P. chrysogenum, respectively. Depending on how durable each wood was, The examined fungi were able to attack the two distinct types of wood in various deterioration patterns. T. grandis wood overtaken by the two molds under study appears to be a useful material for a variety of uses.

Zobrazit více v PubMed

Abdallah M, Abdrabou A. Tutankhamen’s small shrines (naoses): Technology of woodworking and identification of wood species. Int. J. Conserv. Sci. 2018;9:91–104.

Tamburini D, et al. A critical evaluation of the degradation state of dry archaeological wood from Egypt by SEM, ATR-FTIR, wet chemical analysis and Py(HMDS)-GC-MS. Polym. Degrad. Stab. 2017;146:140–154. doi: 10.1016/j.polymdegradstab.2017.10.009. DOI

Blanchette RA, Obst JR, Hedges JI, Weliky K. Resistance of hardwood vessels to degradation by white rot Basidiomycetes. Can. J. Bot. 1988;66:1841–1847. doi: 10.1139/b88-251. DOI

Yang B, Dai Z, Ding S-Y, Wyman CE. Enzymatic hydrolysis of cellulosic biomass. Biofuels. 2011;2:421–449. doi: 10.4155/bfs.11.116. DOI

Hamed SAM. In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int. Biodeter. Biodegrad. 2013;78:98–102. doi: 10.1016/j.ibiod.2012.12.013. DOI

Hosseinihashemi SK, Salem MZM, HosseinAshrafi SK, Jahan Latibari A. Chemical composition and antioxidant activity of extract from the wood of Fagus orientalis: Water resistance and decay resistance against Trametes versicolor. BioResources. 2016;11:3890–3903. doi: 10.15376/biores.11.2.3890-3903. DOI

Salem MZM. EDX measurements and SEM examination of surface of some imported woods inoculated by three mold fungi. Measurement. 2016;86:301–309. doi: 10.1016/j.measurement.2016.03.008. DOI

Hamed S, Mansour MMA. Comparative study on micromorphological changes in wood due to soft-rot fungi and surface mold. Sci. Cult. 2018;4:35–41. doi: 10.5281/zenodo.1214563. DOI

Mansour MM, El-Hefny M, Salem MZ, Ali HM. The biofungicide activity of some plant essential oils for the cleaner production of model linen fibers similar to those used in ancient Egyptian mummification. Processes. 2020;8:79. doi: 10.3390/pr8010079. DOI

Mansour MMA, Salem MZM. Evaluation of wood treated with some natural extracts and Paraloid B-72 against the fungus Trichoderma harzianum: Wood elemental composition, in-vitro and application evidence. Int. Biodeter. Biodegrad. 2015;100:62–69. doi: 10.1016/j.ibiod.2015.02.009. DOI

Blaich R, Esser K. Function of enzymes in wood destroying fungi. Arch. Microbiol. 1975;103:271–277. doi: 10.1007/BF00436360. DOI

Dean RA, Timberlake WE. Production of cell wall-degrading enzymes by Aspergillus nidulans: A model system for fungal pathogenesis of plants. Plant Cell. 1989;1:265–273. doi: 10.1105/tpc.1.3.265. PubMed DOI PMC

Wood TM, McCrae SI. Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: Purification and properties of an α-l-arabinofuranosidase. Appl. Microbiol. Biotechnol. 1996;45:538–545. doi: 10.1007/BF00578468. PubMed DOI

Gramss G, Ziegenhagen D, Sorge S. Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microb. Ecol. 1999;37:140–151. doi: 10.1007/s002489900138. PubMed DOI

Hu HL, et al. Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int. Biodeter. Biodegrad. 2011;65:248–252. doi: 10.1016/j.ibiod.2010.11.008. DOI

Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb. Technol. 2011;49:472–477. doi: 10.1016/j.enzmictec.2011.08.004. PubMed DOI

Yang D-Q. Staining ability of various sapstaining fungi on Jack pine short log sections. For. Prod. J. 2001;51:73–73.

Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 2011;115:919–932. doi: 10.1016/j.funbio.2011.06.017. PubMed DOI

Salem MZM, Mansour MMA, Elansary HO. Evaluation of the effect of inner and outer bark extracts of sugar maple (Acer saccharum var. saccharum) in combination with citric acid against the growth of three common molds. J. Wood Chem. Technol. 2019;39:136–147. doi: 10.1080/02773813.2018.1547763. DOI

Schwarze FWMR. Wood decay under the microscope. Fungal Biol. Rev. 2007;21:133–170. doi: 10.1016/j.fbr.2007.09.001. DOI

Daniel G. Secondary Xylem Biology. Academic Press; 2016. pp. 131–167.

Morris H, Brodersen C, Schwarze FWMR, Jansen S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 2016;7:1665. doi: 10.3389/fpls.2016.01665. PubMed DOI PMC

Krogh, K. B. R., Mørkeberg, A., Jørgensen, H., Frisvad, J. C. & Olsson, L. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO (eds Mark Finkelstein, James D. McMillan, Brian H. Davison, & Barbara Evans) 389–401 (Humana Press).

Yoon JH, Hong SB, Ko SJ, Kim SH. Detection of extracellular enzyme activity in Penicillium using chromogenic media. Mycobiology. 2007;35:166–169. doi: 10.4489/MYCO.2007.35.3.166. PubMed DOI PMC

de Vries Ronald P, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 2001;65:497–522. doi: 10.1128/MMBR.65.4.497-522.2001. PubMed DOI PMC

Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels. 2012;5:45. doi: 10.1186/1754-6834-5-45. PubMed DOI PMC

Unger A, Schniewind A, Unger W. Conservation of Wood Artifacts: A Handbook. Springer Science & Business Media, Science; 2001. p. 578.

Mansour MM, Hamed SAE-KM, Salem MZ, Ali HM. Illustration of the effects of five fungi on Acacia saligna wood organic acids and ultrastructure alterations in wood cell walls by HPLC and TEM examinations. Appl. Sci. 2020;10:2886. doi: 10.3390/app10082886. DOI

Popescu C-M, Dobele G, Rossinskaja G, Dizhbite T, Vasile C. Degradation of lime wood painting supports: Evaluation of changes in the structure of aged lime wood by different physico-chemical methods. J. Anal. Appl. Pyrolysis. 2007;79:71–77. doi: 10.1016/j.jaap.2006.12.014. DOI

Bucur V. Nondestructive Characterization and Imaging of Wood. Springer Science & Business Media, Technology & Engineering; 2003. p. 354.

Brodersen CR, et al. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytol. 2011;191:1168–1179. doi: 10.1111/j.1469-8137.2011.03754.x. PubMed DOI

Schimleck L, et al. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests. 2019;10:728. doi: 10.3390/f10090728. DOI

Abo Elgat WA, et al. The effects of iron rust on the ageing of woods and their derived pulp paper. Polymers. 2021;13:3483. doi: 10.3390/polym13203483. PubMed DOI PMC

Salem MZM, Zidan YE, El Hadidi NMN, Mansour MMA, Abo Elgat WAA. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeter. Biodegrad. 2016;110:206–226. doi: 10.1016/j.ibiod.2016.03.028. DOI

Mohamed WA, Mansour MMA, Salem MZM. Lemna gibba and Eichhornia crassipes extracts: Clean alternatives for deacidification, antioxidation and fungicidal treatment of historical paper. J. Clean. Prod. 2019;219:846–855. doi: 10.1016/j.jclepro.2019.02.097. DOI

Mansour M. Impact of storage conditions on biodeterioration of ancient Egyptian child mummies by Xerophilic Fungi. Egypt. J. Archaeol. Restor. Stud. 2018;8:97–107.

Mohamed WA, Mansour MMA, Salem MZM, Ali HM, Böhm M. X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones. Sci. Rep. 2021;11:22308. doi: 10.1038/s41598-021-01789-z. PubMed DOI PMC

Kotwaliwale N, et al. X-ray imaging methods for internal quality evaluation of agricultural produce. J. Food Sci. Technol. 2014;51:1–15. doi: 10.1007/s13197-011-0485-y. PubMed DOI PMC

Darwish SS, EL Hadidi N, Mansour MMA. The effect of fungal decay on Ficus sycomorus wood. Int. J. Conserv. Sci. 2013;4:271–282.

Bari E, et al. Decay of Carpinus betulus wood by Trametes versicolor—An anatomical and chemical study. Int. Biodeter. Biodegrad. 2019;137:68–77. doi: 10.1016/j.ibiod.2018.11.011. DOI

Bari E, et al. Monitoring the cell wall characteristics of degraded beech wood by white-rot fungi: Anatomical, chemical, and photochemical study. Maderas Cien. Tecnol. 2018;20:35–56. doi: 10.4067/S0718-221X2018005001401. DOI

Bari E, et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. Int. Biodeter. Biodegrad. 2015;104:231–237. doi: 10.1016/j.ibiod.2015.03.033. DOI

Kim JS, Gao J, Daniel G. Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus II. Degradation of lignin and non-cellulosic polysaccharides in European ash wood. Int. Biodeter. Biodegrad. 2015;105:41–50. doi: 10.1016/j.ibiod.2015.08.009. DOI

Blanchette RA. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeter. Biodegrad. 2000;46:189–204. doi: 10.1016/S0964-8305(00)00077-9. DOI

Scheffer TC. Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 1966;4:147–168. doi: 10.1146/annurev.py.04.090166.001051. DOI

Kokutse AD, Stokes A, Baillères H, Kokou K, Baudasse C. Decay resistance of Togolese teak (Tectona grandis L.f) heartwood and relationship with colour. Trees. 2006;20:219–223. doi: 10.1007/s00468-005-0028-0. DOI

Thulasidas PK, Bhat KM. Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz a.Roh- u.Werkst. 2007;65:121–124. doi: 10.1007/s00107-006-0127-7. DOI

Brocco VF, Paes JB, Costa LGD, Brazolin S, Arantes MDC. Potential of teak heartwood extracts as a natural wood preservative. J. Clean. Prod. 2017;142:2093–2099. doi: 10.1016/j.jclepro.2016.11.074. DOI

Rodríguez Anda R, et al. Formation of heartwood, chemical composition of extractives and natural durability of plantation-grown teak wood from Mexico. Holzforschung. 2019;73:547–557. doi: 10.1515/hf-2018-0109. DOI

Broda M. Natural compounds for wood protection against fungi—A review. Molecules. 2020;25:3538. doi: 10.3390/molecules25153538. PubMed DOI PMC

Hukka A, Viitanen HA. A mathematical model of mould growth on wooden material. Wood Sci. Technol. 1999;33:475–485. doi: 10.1007/s002260050131. DOI

Viitanen H, Ritschkoff A-C. Mould Growth in Pine and Spruce Sapwood in Relation to Air Humidity and Temperature. Swedish University of Agricultural Sciences; 1991.

Ghosh SC, Militz H, Mai C. The efficacy of commercial silicones against blue stain and mould fungi in wood. Eur. J. Wood Wood Prod. 2009;67:159–167. doi: 10.1007/s00107-008-0296-7. DOI

Daniel G. Wood Deterioration and Preservation. American Chemical Society; 2003. pp. 34–72.

Mansour MM, Abdel-Megeed A, Nasser RA, Salem MZM. Comparative evaluation of some woody tree methanolic extracts and Paraloid B-72 against phytopathogenic mold fungi Alternaria tenuissima and Fusarium culmorum. BioResources. 2015;10:2570–2584. doi: 10.15376/biores.10.2.2570-2584. DOI

Kerner-Gang W, Schneider RV. Optischen Gläsern isolierte Schimmelpilze. Mater. Organismen Mater. Organ. Matériaux Organismes. 1969;4:291–296.

Eriksson K-EL, Blanchette RA, Ander P. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer Science & Business Media; 2012.

Komon-Zelazowska M, et al. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl. Environ. Microbiol. 2007;73:7415–7426. doi: 10.1128/aem.01059-07. PubMed DOI PMC

Soumya E, Saad IK, Abdellah H, Hassan L. Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface. Mater. Sci. Eng. C. 2013;33:1276–1281. doi: 10.1016/j.msec.2012.12.026. PubMed DOI

Okafor U, Emezue T, Okochi V, Onyegeme-Okerenta B, Nwodo-Chinedu S. Xylanase production by Penicillium chrysogenum (PCL501) fermented on cellulosic wastes. Afr. J. Biochem. Res. 2007;1:048–053.

Kirsh D. Lipase production by Penicillium oxalicum and Aspergillus flavus. Bot. Gaz. 1935;97:321–333. doi: 10.1086/334555. DOI

Hasanin MS, Darwesh OM, Matter IA, El-Saied H. Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal. Agric. Biotechnol. 2019;17:160–167. doi: 10.1016/j.bcab.2018.11.012. DOI

Gautam A, Kumar A, Dutt D. Production of cellulase-free xylanase by Aspergillus flavus ARC-12 using pearl millet stover as the substrate under solid-state fermentation. J. Adv. Enzym. Res. 2015;1:1–9.

Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B. Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr. J. Biotechnol. 2003;2:150–152. doi: 10.5897/AJB2003.000-1030. DOI

Kumar R, Kaur J, Jain S, Kumar A. Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization. J. Genet. Eng. Biotechnol. 2016;14:125–131. doi: 10.1016/j.jgeb.2016.05.006. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace