X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
RSP-2021/123
Researchers Supporting Projec, King Saud University, Riyadh, Saudi Arabia
PubMed
34785725
PubMed Central
PMC8595411
DOI
10.1038/s41598-021-01789-z
PII: 10.1038/s41598-021-01789-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent investigations of a Greco-Roman site at Sais have provided well-preserved archaeobotanical remains within a pile of metal fragments. The remains are compared with comparable modern taxa. The morphology and anatomy are studied using Light microscope (LM), Environmental scanning electron microscope (ESEM) and X-ray computed tomography (CT). To investigate the preservation mode, Energy dispersive spectroscopy (EDS) analysis and elemental mapping are conducted. Results revealed that the archaeobotanical remains are exhibiting close affinity with modern juniper cones. Although, the studied archaeobotanical remains are buried for more than 2 millenniums, they underwent early stages of silicification and copper mineralization. These results are discussed in relation to other excavated objects in the find and to our knowledge and understanding of daily life in the Greco-Roman period.
Zobrazit více v PubMed
Mohamed, W. & El-Rifai, E. An integrated approach for the documentation and virtual reconstruction of metal fragments. In Seventh World Archaeological Congress-WAC 7, Dead Sea, Jordan (2013).
Birks HH. Plant macrofossil introduction. Encycl. Quat. Sci. 2007;3:2266–2288.
van der Veen M. In: The Science of Roman History. Scheidel W, editor. Princeton University Press; 2018. pp. 53–94.
Stanley J-D. Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditer. Rev. Géogr. Pays Méditer./J. Mediter. Geogr. 2005;104:65–73.
Zhao X, et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020;547:109702. doi: 10.1016/j.palaeo.2020.109702. DOI
Sestini G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ. 1989;41:99–127.
Stanley DJ, Warne AG. Nile Delta: Recent geological evolution and human impact. Science. 1993;260:628–634. PubMed
Pennington BT, Sturt F, Wilson P, Rowland J, Brown AG. The fluvial evolution of the Holocene Nile Delta. Quatern. Sci. Rev. 2017;170:212–231. doi: 10.1016/j.quascirev.2017.06.017. DOI
Björdal C, Nilsson T, Daniel G. Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 1999;43:63–73. doi: 10.1016/S0964-8305(98)00070-5. DOI
Douterelo I, Goulder R, Lillie M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil. Ecol. 2010;44:219–227. doi: 10.1016/j.apsoil.2009.12.009. DOI
Weiss E, Kislev ME. Plant remains as a tool for reconstruction of the past environment, economy, and society: Archaeobotany in Israel. Israel J. Earth Sci. 2007;56:163–173.
Birks HJB. Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veg. Hist. Archaeobotany. 2014;23:309–330.
Mauquoy D, Hughes P, Van Geel B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat. 2010;7:1–5.
Jacomet S, Kreuz A, Rösch M. Archäobotanik: Aufgaben Methoden, und Ergebnisse vegetations-und agrargeschichtlicher Forschung. Ulmer; 1999.
Jacomet S. Encyclopedia of quaternary science. Amsterdam: Elsevier; 2007. Plant macrofossil methods and studies: Use in environmental archaeology; pp. 2384–2412.
Takahashi M, Crane PR, Ando H. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, lower Coniacian, upper Cretaceous) of Northeast Japan. J. Plant. Res. 1999;112:187–206. doi: 10.1007/PL00013872. DOI
Poppinga S, et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 2017;7:40302. doi: 10.1038/srep40302. PubMed DOI PMC
Crepet WL, Nixon KC, Grimaldi D, Riccio M. A mosaic Lauralean flower from the Early Cretaceous of Myanmar. Am. J. Bot. 2016;103:290–297. doi: 10.3732/ajb.1500393. PubMed DOI
Feng Z, Röβler R, Annacker V, Yang J-Y. Micro-CT investigation of a seed fern (probable medullosan) fertile pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Res. 2014;26:1208–1215. doi: 10.1016/j.gr.2013.08.005. DOI
Gee CT, Dayvault RD, Stockey RA, Tidwell WD. Greater palaeobiodiversity in conifer seed cones in the Upper Jurassic Morrison Formation of Utah, USA. Palaeobiodivers. Palaeoenviron. 2014;94:363–375. doi: 10.1007/s12549-014-0160-1. DOI
Herrera F, et al. A new voltzian seed cone from the Early Cretaceous of Mongolia and its implications for the evolution of ancient conifers. Int. J. Plant Sci. 2015;176:791–809. doi: 10.1086/683060. DOI
Rozefelds A, et al. Traditional and computed tomographic (CT) techniques link modern and Cenozoic fruits of Pleiogynium (Anacardiaceae) from Australia. Alcheringa. 2015;39:24–39. doi: 10.1080/03115518.2014.951916. DOI
Su T, Wilf P, Huang Y, Zhang S, Zhou Z. Peaches Preceded Humans: Fossil Evidence from SW China. Sci. Rep. 2015;5:16794. doi: 10.1038/srep16794. PubMed DOI PMC
Nishida H. The frontier of fossil plant studies. Gakujutu Geppou. 2001;54:1142–1144.
Collinson ME, et al. X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: A critical evaluation. Botany. 2016;94:697–711. doi: 10.1139/cjb-2016-0078. DOI
Dilcher DL, Manchester SR. Investigations of angiosperms from the Eocene of North America: A fruit belonging to the Euphorbiaceae. Tertiary Res. 1987;9:45–58.
Koch BE, Friedrich WL. StereoskopischeRntgen-aufnahmen von fossilenFrüchten. Bull. Geol. Soc. Denmark. 1972;21:358–367.
Debussche M, Isenmann P. Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos. 1989;56:327–338.
Esteves CF, Costa JM, Vargas P, Freitas H, Heleno RH. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE. 2015;10:e0138882. doi: 10.1371/journal.pone.0138882. PubMed DOI PMC
Manniche L. Sacred Luxuries: Fragrance, Aromatherapy, and Cosmetics in Ancient Egypt. Cornell University Press; 1999.
Kendall P. Trees for life Discover the forest, Mythology & folklore, Juniper. Iris Publisher; 2005.
Waltz LR. The Herbal Encyclopedia: A Practical Guide to the Many Uses of Herbs. iUniverse; 2004.
Tunon H, Olavsdotter C, Bohlin L. Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J. Ethnopharmacol. 1995;48:61–76. PubMed
Modnicki D, Łabędzka J. Estimation of the total phenolic compounds in juniper sprouts (Juniperus communis, Cupressaceae) from different places at the kujawsko-pomorskie province. Herba Pol. 2009;55:127–132.
Longe JL. The Gale Encyclopedia of Alternative Medicine. London: Thomson Gale ((Thomson Gale, A Part of The Thomson Corporation); 2005.
Wurges J. Juniper. In: Longe JL, editor. The Gale Encyclopedia of Alternative Medicine. Thomson/Gale; 2005.
Larson E. Dangerous Tastes: The Story of Spices. Northeast. Nat. 2002;9:124.
Dalby A. Dangerous Tastes: The Story of Spices. University of California Press; 2000.
Lorman J. Greek Life. Gregory House; 1997. pp. 76–77.
El-Bana M, Shaltout K, Khalafallah A, Mosallam H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai, Egypt. Flora. 2010;205:171–178. doi: 10.1016/j.flora.2009.04.004. DOI
Moustafa A, et al. Ecological Prominence of Juniperus phoenicea L. growing in Gebel Halal, North Sinai, Egypt. Catrina. 2016;15:11–23.
Dalby A. Siren Feasts: A History of Food and Gastronomy in Greece. Routledge; 1997.
Klimko M, et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora. 2007;202:133–147. doi: 10.1016/j.flora.2006.03.006. DOI
Farjon A. A Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens; 2005.
Farjon A. A Handbook of the World's Conifers (2 vols.) Brill; 2010.
Avci M, Zielinski J. Juniperus oxycedrus f. yaltirikiana (Cupressaceae): A new form from NW Turkey. Phytol. Balcanica. 2008;14:37–40.
Browicz K, Ielioski J. Chorology of Trees and Shrubs in Southwest Asia and Adjacent Regions. PWN; 1984.
Adams RP. Junipers of the World: The Genus Juniperus. Trafford Publishing; 2014.
Liphschitz N, Waisel Y, Lev-Yadun S. Dendrochronological investigations in Iran. Tree-Ring. Bull. 1979;39:39–45.
Douaihy B, et al. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae) AoB Plants. 2012 doi: 10.1093/aobpla/pls013. PubMed DOI PMC
Khajjak MH, et al. Seed and cone biometry of Juniperus excelsa from three Provenances in Balochistan. Int. J. Biosci. 2017;10:345–355. doi: 10.12692/ijb/10.1.345-355. DOI
Klimko M, et al. Morphological variation of Juniperus oxycedrus subsp oxycedrus (Cupressaceae) in the Mediterranean region. Flora. 2007;202:133–147. doi: 10.1016/j.flora.2006.03.006. DOI
Schulz C, Jagel A, Stützel T. Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora. 2003;198:161–177. doi: 10.1078/0367-2530-00088. DOI
Arista M, Ortiz PL, Talavera S. Reproductive cycles of two allopatric subspecies of Juniperus oxycedrus (Cupressaceae) Flora. 2001;196:114–120. doi: 10.1016/S0367-2530(17)30026-9. DOI
Juan R, Pastor J, Fernández I, Diosdado JC. Relationships between mature cone traits and seed viability in Juniperus oxycedrus L. subsp macrocarpa (Sm.) Ball (Cupressaceae) Acta Biol. Cracov. Bot. 2003;45:69–78.
Ward L, Shellswell C. Looking After Juniper, Ecology, Conservation and Folklore. Plantlife Press; 2017.
García D, Zamora R, Gómez JM, Jordano P, Hódar JA. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J. Ecol. 2000;88:435–446. doi: 10.1046/j.1365-2745.2000.00459.x. DOI
Grzeskowiak M, Bednorz L. Zmiennosc morfologiczna szyszkojagod jalowca pospolitego Juniperus communis L. subsp. communis w Nadlesnictwie Kaliska [Bory Tucholskie] Roczniki Akademii Rolniczej w Poznaniu. Botanika. 2002;5:71–78.
Shahi A, Movafeghi A, Hekmat-Shoar H, Neishabouri A, Iranipour S. Demographic study of Juniperus communis L. on Mishu-Dagh altitudes in North West of Iran. Asian J. Plant Sci. 2007;6:1080–1087. doi: 10.3923/ajps.2007.1080.1087. DOI
Thomas PA, El-Barghathi M, Polwart A. Biological flora of the British Isles: Juniperus communis L. J. Ecol. 2007;95:1404–1440. doi: 10.1111/j.1365-2745.2007.01308.x. DOI
McCartan SA, Gosling PG. Guidelines for seed collection and stratification of common juniper (Juniperus communis L.) Tree Plant. Notes. 2013;56:24–29.
García D, Zamora R, Gómez JM, Hódar JA. Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Écoscience. 2002;9:251–255. doi: 10.1080/11956860.2002.11682711. DOI
Raatikainen N, Tanska T. Cone and seed yields of the juniper (Juniperus communis) in southern and central Finland. Acta Bot. Fenn. 1993;149:27–39.
McCartan S, Gosling PG, Ives L. Seed fill determination in common juniper (Juniperus communis L.) In: Beardmore TL, Simpson JD, editors. Procdings of IUFRO Tree Seed Symposium, Recent Advances in Seed Physiology and Technology. Fredricton; 2007. p. 65.
McCartan S, Gosling PG. Exposed! Predicting filled and empty seeds in juniper with x-radiographs. Ecotype. 2007;38:7.
Pers-Kamczyc E, Tyrała-Wierucka Ż, Rabska M, Wrońska-Pilarek D, Kamczyc J. The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J. Plant Physiol. 2020;248:153156. doi: 10.1016/j.jplph.2020.153156. PubMed DOI
Verheyen K, et al. Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition? Plant Biol. 2009;11:49–59. doi: 10.1111/j.1438-8677.2009.00214.x. PubMed DOI
Kormuťák A, Bolecek P, Galgóci M, Gömöry D. Longevity and germination of Juniperus communis L. pollen after storage. Sci. Rep. 2021;11:12755. doi: 10.1038/s41598-021-90942-9. PubMed DOI PMC
Yahaya N, Lim KS, Noor NM, Othman SR, Abdullah A. Effects of clay and moisture content on soil-corrosion dynamic. Malays. J. Civ. Eng. 2011;23:24–32. doi: 10.11113/mjce.v23.15809. DOI
Scott, D. A. (2002).
Selwyn LS. ASM Handbook Volume 13C. Corrosion: Environments and Industries. ASM International; 2006. pp. 306–322.
Ingo GM, et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A. 2006;83:513–520. doi: 10.1007/s00339-006-3550-z. DOI
Papadopoulou O, Vassiliou P, Grassini S, Angelini E, Gouda V. Soil-induced corrosion of ancient Roman brass: A case study. Mater. Corros. 2016;67:160–169. doi: 10.1002/maco.201408115. DOI
Robbiola L, Portier R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J. Cult. Herit. 2006;7:1–12. doi: 10.1016/j.culher.2005.11.001. DOI
Vuai SA, Nakamura K, Tokuyama A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan. Geochem. J. 2003;37:579–592.
Marani D, Patterson JW, Anderson PR. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 1995;29:1317–1326. doi: 10.1016/0043-1354(94)00286-G. DOI
Baboian R. Corrosion Tests and Standards: Application and Interpretation. ASTM International; 2005.
Strandberg H. Reactions of copper patina compounds—II. Influence of sodium chloride in the presence of some air pollutants. Atmos. Environ. 1998;32:3521–3526. doi: 10.1016/S1352-2310(98)00058-2. DOI
Borkow G, Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 2009;3:272–278.
Dollwet H. Historic uses of copper compounds in medicine. Trace Elem. Med. 1985;2:80–87.
Milanino R. Copper and the Skin. Informa Healthcare; 2006. Copper in medicine and personal care: A historical overview; pp. 149–160.
Robinson M. Environmental archaeology: Approaches, techniques & applications. Antiquity. 2005;79:229–230.
Milanesi C, et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell. 2009;41:443–447. doi: 10.1016/j.tice.2009.03.002. PubMed DOI
Akahane H, Furuno T, Miyajima H, Yoshikawa T, Yamamoto S. Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth's history. Sed. Geol. 2004;169:219–228. doi: 10.1016/j.sedgeo.2004.06.003. DOI
Leo RF, Barghoorn ES. Silicification of wood. Bot. Mus. Leafl. Harv. Univ. 1976;25:1–47.
Hellawell J, et al. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochim. Cosmochim. Acta. 2015;149:79–87. doi: 10.1016/j.gca.2014.10.018. DOI