The Effects of Iron Rust on the Ageing of Woods and Their Derived Pulp Paper
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/143/OHK1/3T/11
Grant Agency of the Faculty of Civil Engineering at Czech Technical University in Prague
PubMed
34685242
PubMed Central
PMC8537420
DOI
10.3390/polym13203483
PII: polym13203483
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier transform infrared spectroscopy, accelerated ageing, iron rust, mechanical properties, wood pulp,
- Publikační typ
- časopisecké články MeSH
The accelerated ageing of wood in terms of heating or iron rusting has a potential effect on the physio-mechanical, chemical and biological properties of wood. The effects of accelerated ageing on the mechanical, physical and fungal activity properties of some wood materials (Schinus terebinthifolius, Erythrina humeana, Tectona grandis, Pinus rigida and Juglans nigra) were studied after several cycles of heating and iron rusting. The fungal activity was assayed against the growth of Aspergillus terreus, Aspergillus niger, Fusarium culmorum and Stemphylium solani. In addition, the mechanical and optical properties of paper sheets produced from those wood pulps by means of Kraft cooking were evaluated. The mechanical and chemical properties of the studied wood species were affected significantly (p < 0.05) by the accelerated ageing, compared to control woods. With Fourier transform infrared (FTIR) spectroscopy, we detected an increase in the intensity of the spectra of the functional groups of cellulose in the heated samples, which indicates an increase in cellulose content and decrease in lignin content, compared to other chemical compounds. For pulp properties, woods treated by heating showed a decrease in the pulp yield. The highest significant values of tensile strength were observed in pulp paper produced from untreated, heated and iron-rusted P. rigida wood and they were 69.66, 65.66 and 68.33 N·m/g, respectively; we calculated the tear resistance from pulp paper of untreated P. rigida (8.68 mN·m2/g) and T. grandis (7.83 mN·m2/g) and rusted P. rigida (7.56 mN·m2/g) wood; we obtained the values of the burst strength of the pulp paper of untreated woods of P. rigida (8.19 kPa·m2/g) and T. grandis (7.49 kPa·m2/g), as well as the fold number of the pulp paper of untreated, heated and rusted woods from P. rigida, with values of 195.66, 186.33 and 185.66, respectively. After 14 days from the incubation, no fungal inhibition zones were observed. Accelerated ageing (heated or iron-rusted) produced significant effects on the mechanical and chemical properties of the studied wood species and affected the properties of the produced pulp paper.
Conservation Department Faculty of Archaeology Aswan University Aswan 81528 Egypt
General Laboratory and Research Misr Edfu Pulp Writing and Printing Paper Co Aswan 81656 Egypt
Restoration Department Faculty of Archaeology Cairo University Giza 12613 Egypt
Zobrazit více v PubMed
Hamed S.A.-K.M., Salem M.Z.M., Ali H.M., Ahmed K.M.E.-S. Investigating the impact of weathering and indoor aging on wood acidity using spectroscopic analyses. BioResources. 2020;15:6506–6525. doi: 10.15376/biores.15.3.6506-6525. DOI
Kocaefe D., Huang X., Kocaefe Y., Boluk Y. Quantitative characterization of chemical degradation of heat-treated wood surfaces during artificial weathering using XPS. Surf. Interface Anal. 2013;45:639–649. doi: 10.1002/sia.5104. DOI
Salim E., Abdel-Hamied M., Salim S., Gamal S., Mohamed S., Galal F.E.-Z., Tarek F., Hassan R.R.A., Ali H.M., Salem M.Z.M. Reduction of borax/agar-based gel residues used to neutralize acidity of a historical manuscript with use of different paper barriers: Artificial ageing results. BioResources. 2020;15:6576–6599. doi: 10.15376/biores.15.3.6576-6599. DOI
Temiz A., Terziev N., Eikenes M., Hafren J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007;253:5355–5362. doi: 10.1016/j.apsusc.2006.12.005. DOI
Temiz A., Yildiz U.C., Aydin I., Eikenes M., Alfredsen G., Çolakoglu G. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Appl. Surf. Sci. 2005;250:35–42. doi: 10.1016/j.apsusc.2004.12.019. DOI
Tshabalala M.A., Gangstad J.E. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. J. Coat. Technol. 2003;75:37–43. doi: 10.1007/BF02730098. DOI
Feist W.C. Archaeological Wood, Properties, Chemistry, and Preservation. American Chemical Society; Washington, DC, USA: 1989. Outdoor Wood Weathering and Protection; pp. 263–298. DOI
Williams R.S. Weathering of wood. Handb. Wood Chem. Wood Compos. 2005;7:139–185.
Schmidt P., Porraz G., Slodczyk A., Bellot-Gurlet L., Archer W., Miller C.E. Heat treatment in the South African Middle Stone Age: Temperature induced transformations of silcrete and their technological implications. J. Archaeol. Sci. 2013;40:3519–3531. doi: 10.1016/j.jas.2012.10.016. DOI
Popescu M.C., Froidevaux J., Navi P., Popescu C.M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013;1033:176–186. doi: 10.1016/j.molstruc.2012.08.035. DOI
Cakıcıer N., Korkut S., Korkut D., Kurtoğlu A., Sönmez A. Effects of QUV accelerated aging on surface hardness, surface roughness, glossiness, and color difference for some wood species. Int. J. Phys. Sci. 2011;6:1929–1939. doi: 10.5897/IJPS11.439. DOI
Miklečić J., Jirouš-Rajković V. Accelerated Weathering of Coated and Uncoated Beech Wood Modified with Citric Acid. Drv. Ind. 2011:277–282. doi: 10.5552/drind.2011.1116. DOI
Matsuo M., Yokoyama M., Umemura K., Sugiyama J., Kawai S., Gril J., Kubodera S., Mitsutani T., Ozaki H., Sakamoto M., et al. Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung. 2011;65:361–368. doi: 10.1515/hf.2011.040. DOI
Akyildiz M.H., Saim A. Effect of Heat Treatment on Equilibrium Moisture Content (EMC) of Some Wood Species in Turkey. Res. J. Agric. Biol. Sci. 2008;4:660–665.
Baker A. Degradation of Wood by Products of Metal Corrosion. Volume 229 US Department of Agriculture, Forest Service, Forest Products Laboratory; Washington, DC, USA: 1974.
Zelinka S.L., Stone D.S. Corrosion of metals in wood: Comparing the results of a rapid test method with long-term exposure tests across six wood treatments. Corros. Sci. 2011;53:1708–1714. doi: 10.1016/j.corsci.2011.01.039. DOI
Zelinka S., Rammer D. Review of Test Methods Used to Determine the Corrosion Rate of Metals in Contact with Treated Wood. US Department of Agriculture, Forest Service, Forest Products Laboratory; Washington, DC, USA: 2005. General Technical Report; FPL-GTR-156.
Zelinka S.L. Corrosion of metals in wood products. In: Aliofkhazraei M., editor. Corrosion of Metals in Wood Products, Developments in Corrosion Protection. InTech; London, UK: 2014. pp. 567–592. DOI
Zelinka S.L., Glass S.V., Derome D. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment. Corros. Sci. 2014;83:67–74. doi: 10.1016/j.corsci.2014.01.044. DOI
Zelinka S.L., Stone D.S. The effect of tannins and pH on the corrosion of steel in wood extracts. Mater. Corros. 2011;62:739–744. doi: 10.1002/maco.201005845. DOI
Zelinka S.L. Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives. USDA Forest Service, Forest Products Laboratory; Washington, DC, USA: 2013. 68p. General Technical Report, FPL-GTR-220. DOI
Symeonidis A., Marangos M. Insight and Control of Infectious Disease in Global Scenario. InTech; London, UK: 2012. Iron and microbial growth; pp. 289–330.
Kosman D.J. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 2003;47:1185–1197. doi: 10.1046/j.1365-2958.2003.03368.x. PubMed DOI
Hirayama T. Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radic. Biol. Med. 2019;133:38–45. doi: 10.1016/j.freeradbiomed.2018.07.004. PubMed DOI
Nyilasi I., Papp T., Takó M., Nagy E., Vágvölgyi C. Iron Gathering of Opportunistic Pathogenic Fungi. A Mini Review. Acta Microbiol. Immunol. Hung. 2005;52:185–197. doi: 10.1556/AMicr.52.2005.2.4. PubMed DOI
Xu G., Goodell B. Mechanisms of wood degradation by brown-rot fungi: Chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 2001;87:43–57. doi: 10.1016/S0168-1656(00)00430-2. PubMed DOI
Potrykus J., Stead D., Maccallum D.M., Urgast D.S., Raab A., Van Rooijen N., Feldmann J., Brown A.J.P. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events. PLoS Pathog. 2013;9:e1003676. doi: 10.1371/journal.ppat.1003676. PubMed DOI PMC
Howard D.H. Acquisition, Transport, and Storage of Iron by Pathogenic Fungi. Clin. Microbiol. Rev. 1999;12:394–404. doi: 10.1128/CMR.12.3.394. PubMed DOI PMC
Salem M.Z.M., Alotaibi S., Abo Elgat W.A.A., Taha A., Fares Y., El-Shehawi A., Ghareeb R. Antifungal Activities of Wood and Non-Wood Kraft Handsheets Treated with Melia azedarach Extract Using SEM and HPLC Analyses. Polymers. 2021;13:2012. doi: 10.3390/polym13122012. PubMed DOI PMC
Salem M.Z.M., Ali H.M., Akrami M. Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Sci. Rep. 2021;11:19027. doi: 10.1038/s41598-021-98415-9. PubMed DOI PMC
Taha A.S., Abo Elgat W.A.A., Fares Y.G.D., Dessoky E.S., Behiry S.I., Salem M.Z.M. Using plant extractives as eco-friendly pulp additives: Mechanical and antifungal properties of paper sheets made from linen fibers. BioResources. 2021;16:2589–2606. doi: 10.15376/biores.16.2.2589-2606. DOI
Strlič M., Grossi C.M., Dillon C., Bell N., Fouseki K., Brimblecombe P., Menart E., Ntanos K., Lindsay W., Thickett D., et al. Damage function for historic paper. Part III: Isochrones and demography of collections. Heritage Sci. 2015;3:40. doi: 10.1186/s40494-015-0069-7. DOI
Hassan R.R.A., Mahmoud S.M.A., Karam Y.A., Salah S.M., Ebrahim S.Y., Abdelwahab M.A., Ahmed A.-H.M.H., Ali H.M., Böhm M., Salem M.Z.M. Application of Frankincense and Rice Starch as Eco-Friendly Substances for the Resizing of Paper as a Conservation Practice. BioResources. 2021;16:7180–7204. doi: 10.15376/biores.16.4.7180-7204. DOI
Rebrikova N.L., Manturovskaya N.V. Foxing—A New Approach to an Old Problem. Restaurator. 2000;21:85–100. doi: 10.1515/REST.2000.85. DOI
Ghorbani M., Samanian K., Afsharpuor M. Effect of physical properties of bacterial cellulose nanofibers bio-composite as a coating on the paper works. Int. J. Conserv. Sci. 2018;9:71–80.
Baglioni P., Giorgi R. Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter. 2006;2:293–303. doi: 10.1039/b516442g. PubMed DOI
Budakçi M., Korkut D.S. The color changes on varnish layers after accelerated aging through the hot and cold-check test. Afr. J. Biotechnol. 2010;9:3595–3602.
Froidevaux J., Volkmer T., Gril J., Fioravanti M., Navi P. Comparison between accelerated thermo-hydro aged wood and naturally aged wood; Proceedings of the 1st Workshop of COST Action FP0904’Mechano-Chemical Transformations of Wood during Thermo-Hydro-Mechanical Processing; Bienne, Switzerland. 16 February 2011.
Altinok M., Ozalp M., Korkut S. The effects of heat treatment on some mechanical properties of laminated beech (Fagus orientalis L.) wood. Wood Res. 2010;55:131–142.
Matsuo M., Yokoyama M., Umemura K., Sugiyama J., Kawai S., Gril J., Yano K.I., Kubodera S., Mitsutani T., Ozaki H. Evaluation of the aging wood from historical buildings as compared with the accelerated aging wood and cellulose, Analysis of color properties; Proceedings of the International Conference on Wooden Cultural Heritage, Evaluation of Deterioration and Management of Change; Hamburg, Germany. 7–10 October 2009; p. 6.
Yokoyama M., Gril J., Matsuo M., Yano H., Sugiyama J., Clair B., Kubodera S., Mistutani T., Sakamoto M., Ozaki H. Mechanical characteristics of aged Hinoki (Chamaecyparis obtusa Endl.) wood from Japanese historical buildings; Proceedings of the International Conference on Wooden Cultural Heritage, Evaluation of Deterioration and Management of Change; Hamburg, Germany. 7–10 October 2009; p. 8.
Colmars J., Gril J., Yano H., Nakano T. Creep Properties of Heat Treated Wood in Radial Direction; Proceedings of the Joint meeting of COST Action IE0601 WoodCultHer Wood Science for Conservation of Cultural Heritage, and the European Society of Wood Mechanics; Braga, Portugal. 5–7 November 2008; pp. 24–29.
American Wood Preservers’ Association . Standard Method of Determining Corrosion of Metal in Contact with Treated Wood. American Wood Preservers’ Association; Selma, AL, USA: 2014. AWPA E12-94.
American Society for Testing and Materials . Standard Practice for Operating Salt Spray (Fog) Apparatus. American Society for Testing and Materials; West Conshohocken, PA, USA: 2003. ASTM, B-117-03.
McNatt J.D., Link C.L. Analysis of ASTM D 1037 accelerated-aging test. For. Prod. J. 1989;39:51–57.
American Society for Testing and Materials . Standard Test Methods for Evaluating Properties of Wood-Based Fiber and Particle Panel Materials. American Society for Testing and Materials; West Conshohocken, PA, USA: 2006. ASTM, Designation: D 1037-06A.
Nasser R.A., Salem M.Z.M., Al-Mefarrej H.A., Aref I.M. Measurement of Some Strength Properties and the Chemical Compositions of Seven Hardwood Species Grown in Northwest Egypt. J. Test. Eval. 2016;44:20140532. doi: 10.1520/JTE20140532. DOI
British Standard Methods of Testing Small Clear Specimens of Timber. London, UK. [(accessed on 18 September 2021)]. Available online: http://211.167.243.154:1012/file/gwbz/BSþ373-1957.pdf.
Bektaş İ., Ramazan K. Principal mechanical properties of cypress wood (Cupressus Sempervirens L.) naturally grown in (Kahramanmaraş) Eastern Mediterranean of Turkey. Gazi Univ. J. Sci. 2010;23:357–362.
Korkut S., Guller B. Physical and mechanical properties of European Hophornbeam (Ostrya carpinifolia Scop.) wood. Bioresour. Technol. 2008;99:4780–4785. doi: 10.1016/j.biortech.2007.09.058. PubMed DOI
Zeidler A., Salem M.Z.M., Borůvka V. Mechanical Properties of Grand Fir Wood Grown in the Czech Republic in Vertical and Horizontal Positions. BioResources. 2015;10:793–808. doi: 10.15376/biores.10.1.793-808. DOI
American Society for Testing and Materials (ASTM) D143-14. Standard Test Methods for Small Clear Specimens of Timber. ASTM International; West Conshohocken, PA, USA: 2014.
El-Osta M. Some strength properties of Juniper southwest Saudi Arabia. J. Coll. Agric. King Saud. Univ. 1985;7:103–112.
American Society for Testing and Materials (ASTM) D2395-84: Standard Test Method for Specific Gravity of Wood and Wood-Base Materials—Method A. ASTM International; West Conshohocken, PA, USA: 1989.
Salem M.Z.M., Elgat W.A.A.A., Taha A.S., Fares Y.G.D., Ali H.M. Impact of Three Natural Oily Extracts as Pulp Additives on the Mechanical, Optical, and Antifungal Properties of Paper Sheets Made from Eucalyptus camaldulensis and Meryta sinclairii Wood Branches. Materials. 2020;13:1292. doi: 10.3390/ma13061292. PubMed DOI PMC
Salem M.Z.M., Zidan Y.E., El Hadidi N.M., Mansour M.M., Abo Elgat W.A.A. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeterior. Biodegrad. 2016;110:206–226. doi: 10.1016/j.ibiod.2016.03.028. DOI
Taha A.S., Abo Elgat W.A.A., Salem M.Z.M., Ali H.M., Fares Y.G., Elshikh M.S. Impact of some plant source additives on enhancing the properties and antifungal activities of pulp made from Linen fibers. BioResources. 2019;14:6025–6046.
Miklečić J., Španić N., Jirouš-Rajković V. Wood color changes by ammonia fuming. BioResources. 2012;7:3767–3778.
Essa A.M., Khallaf M.K. Biological nanosilver particles for the protection of archaeological stones against microbial colonization. Int. Biodeterior. Biodegrad. 2014;94:31–37. doi: 10.1016/j.ibiod.2014.06.015. DOI
Mansour M.M.A., Abdel-Megeed A., Nasser R.A., Salem M.Z.M. Comparative Evaluation of Some Woody Tree Methanolic Extracts and Paraloid B-72 against Phytopathogenic Mold Fungi Alternaria tenuissima and Fusarium culmorum. BioResources. 2015;10:2570–2584. doi: 10.15376/biores.10.2.2570-2584. DOI
Mansour M.M.A., Nasser R.A., Salem M.Z.M., Ali H.M., Hatamleh A. Study of Mold Invasion on the Surface of Wood/Polypropylene Composites Produced from Aqueous Pretreated Wood Particles, Part 2: Juniperus procera Wood-Branch. BioResources. 2017;12:4187–4201. doi: 10.15376/biores.12.2.4187-4201. DOI
Mansour M.M., Salem M.Z.M. Evaluation of wood treated with some natural extracts and Paraloid B-72 against the fungus Trichoderma harzianum: Wood elemental composition, in-vitro and application evidence. Int. Biodeterior. Biodegrad. 2015;100:62–69. doi: 10.1016/j.ibiod.2015.02.009. DOI
Nasser R., Mansour M.M.A., Salem M.Z.M., Ali H.M., Aref I.M. Mold Invasion on the Surface of Wood/Polypropylene Composites Produced from Aqueous Pretreated Wood Particles, Part 1: Date Palm Midrib. BioResources. 2017;12 doi: 10.15376/biores.12.2.4078-4092. DOI
The Statistical Analysis System (SAS) Users Guide: Statistics (Release 8.02) SAS Institute Inc.; Cary, NC, USA: 2001.
Naumann A., Sudhakar P., Andrea P. Fourier Transform Infrared Microscopy in Wood Analysis. In: Kües U., editor. Wood Production, Wood Technology, and Biotechnological Impacts. Universitätsverlag Göttingen, The Georg August University of Göttingen; Göttingen, Germany: 2007. p. 179.
Popescu C.-M., Popescu M.-C., Singurel G., Vasile C., Argyropoulos D., Willför S. Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc. 2007;61:1168–1177. doi: 10.1366/000370207782597076. PubMed DOI
Báder M., Németh R., Sandak J., Sandak A. FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose. 2020;27:6811–6829. doi: 10.1007/s10570-020-03131-8. DOI
Nuopponen M. FT-IR and UV Raman Spectroscopic Studies on Thermal Modification of Scots Pine Wood and Its Extractable Compounds. Laboratory of Forest Products Chemistry, Helsinki University of Technology; Espoo, Finland: 2005. (Series A, 23).
Zhao J., Xiuwen W., Hu J., Liu Q., Shen D., Xiao R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2014;108:133–138. doi: 10.1016/j.polymdegradstab.2014.06.006. DOI
Yassin Z., El Hadidi N.N., Mohamed M.F. Examination and Analyses of a Wooden Face a The Museum Storage at The Faculty of Archaeology, Cairo University. Mediterr. Archaeol. Archaeom. 2016;16:1–11. doi: 10.5281/zenodo.47538. DOI
Shi J., Xing D., Lia J. FTIR Studies of the Changes in Wood Chemistry from Wood Forming Tissue under Inclined Treatment. Energy Procedia. 2012;16:758–762. doi: 10.1016/j.egypro.2012.01.122. DOI
Bodirlau R., Teaca C. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom. J. Phys. 2009;54:93–104.
Kavkler K., Demsar A. Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibres. Tekstilec. 2012;55:19–31.
Müller G., Schöpper C., Vos H., Kharazipour A., Polle A. FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources. 2009;4:49–71.
Tjeerdsma B.F., Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst. 2005;63:102–111. doi: 10.1007/s00107-004-0532-8. DOI
Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010;82:772–778. doi: 10.1016/j.carbpol.2010.05.052. DOI
Bonifazi G., Calienno L., Capobianco G., Monaco A.L., Pelosi C., Picchio R., Serranti S. Modeling color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier Transform Infrared spectroscopy and hyperspectral imaging. Polym. Degrad. Stab. 2015;113:10–21. doi: 10.1016/j.polymdegradstab.2015.01.001. DOI
Traoré M., Kaal J., Cortizas A.M. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;153:63–70. doi: 10.1016/j.saa.2015.07.108. PubMed DOI
Li M.-Y., Cheng S.-C., Li D., Wang S., Huang A.-M., Sun S.-Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015;26:221–225. doi: 10.1016/j.cclet.2014.11.024. DOI
Parida C., Dash S.K., Pradhan C. FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open J. Compos. Mater. 2014;5:5–10. doi: 10.4236/ojcm.2015.51002. DOI
Poletto M., Zattera A.J., Santana R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012;126:E337–E344. doi: 10.1002/app.36991. DOI
Traoré M., Kaal J., Cortizas A.M. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2018;52:487–504. doi: 10.1007/s00226-017-0967-9. PubMed DOI PMC
Gelbrich J., Mai C., Militz H. Chemical changes in wood degraded by bacteria. Int. Biodeterior. Biodegrad. 2008;61:24–32. doi: 10.1016/j.ibiod.2007.06.007. DOI
Sundqvist B. Doctoral Thesis. Luleå Tekniska Universitet; Luleå, Sweden: 2004. Colour Changes and Acid Formation in Wood during Heating.
Bhuiyan T.R., Hirai N., Sobue N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 2000;46:431–436. doi: 10.1007/BF00765800. DOI
Hakkou M., Pétrissans M., Zoulalian A., Gérardin P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 2005;89:1–5. doi: 10.1016/j.polymdegradstab.2004.10.017. DOI
Awoyemi L., Westermark U. Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci. Technol. 2005;39:484–491. doi: 10.1007/s00226-005-0001-5. DOI
Beech I.B., Gaylarde C. Recent advances in the study of biocorrosion: An overview. Rev. Microbiol. 1999;30:117–190. doi: 10.1590/S0001-37141999000300001. DOI
Ecaza M., Kronstad J.W. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 2013;3:80. doi: 10.3389/fcimb.2013.00080. PubMed DOI PMC
Gerwien F., Safyan A., Wisgott S., Brunke S., Kasper L., Hube B. The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition. Front. Microbiol. 2017;8:1055. doi: 10.3389/fmicb.2017.01055. PubMed DOI PMC
Stanford F., Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes. 2020;11:1296. doi: 10.3390/genes11111296. PubMed DOI PMC
Lugauskas A., Demčenko I., Selskienė A., Pakštas V., Jaskelevičius B., Narkevičius A., Bučinskienė D. Resistance of Chromated Zinc Coatings to the Impact of Microscopic Fungi. Mater. Sci. 2011;17:20–26. doi: 10.5755/j01.ms.17.1.243. DOI
Charng T., Lansing F. Review of corrosion causes and corrosion control in a technical facility. TDA Prog. Rep. 1982;42:145–156.
Gu T. New Understandings of Biocorrosion Mechanisms and their Classifications. J. Microb. Biochem. Technol. 2012;4:4. doi: 10.4172/1948-5948.1000e107. DOI