Computational Screening of T-Muurolol for an Alternative Antibacterial Solution against Staphylococcus aureus Infections: An In Silico Approach for Phytochemical-Based Drug Discovery
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022B0004
Faculty of Economics and Management, Czech University of Life Sciences in Prague
PubMed
39273596
PubMed Central
PMC11395065
DOI
10.3390/ijms25179650
PII: ijms25179650
Knihovny.cz E-zdroje
- Klíčová slova
- MD simulation, density functional theory, molecular docking, pharmacokinetics, phytochemicals,
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- antioxidancia farmakologie chemie MeSH
- bakteriální proteiny antagonisté a inhibitory metabolismus chemie MeSH
- fytonutrienty * farmakologie chemie MeSH
- lidé MeSH
- objevování léků * metody MeSH
- počítačová simulace MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- stafylokokové infekce farmakoterapie mikrobiologie MeSH
- Staphylococcus aureus * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antioxidancia MeSH
- bakteriální proteiny MeSH
- fytonutrienty * MeSH
Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in this study, we have screened T-muurolol for possible interactions with several S. aureus-specific bacterial proteins to establish its potential as an alternative antibacterial agent. Based on its binding affinity and interactions with amino acids, T-muurolol was identified as a potential inhibitor of S. aureus lipase, dihydrofolate reductase, penicillin-binding protein 2a, D-Ala:D-Ala ligase, and ribosome protection proteins tetracycline resistance determinant (RPP TetM), which indicates its potentiality against S. aureus and its multi-drug-resistant strains. Also, T-muurolol exhibited good antioxidant and anti-inflammatory activity by showing strong binding interactions with flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, and cyclooxygenase-2. Consequently, molecular dynamics (MD) simulation and recalculating binding free energies elucidated its binding interaction stability with targeted proteins. Furthermore, quantum chemical structure analysis based on density functional theory (DFT) depicted a higher energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (EHOMO-LUMO) with a lower chemical potential index, and moderate electrophilicity suggests its chemical hardness and stability and less polarizability and reactivity. Additionally, pharmacological parameters based on ADMET, Lipinski's rules, and bioactivity score validated it as a promising drug candidate with high activity toward ion channel modulators, nuclear receptor ligands, and enzyme inhibitors. In conclusion, the current findings suggest T-muurolol as a promising alternative antibacterial agent that might be a potential phytochemical-based drug against S. aureus. This study also suggests further clinical research before human application.
Zobrazit více v PubMed
Pollitt E.J.G., Szkuta P.T., Burns N., Foster S.J. Staphylococcus aureus Infection Dynamics. PLoS Pathog. 2018;14:e1007112. doi: 10.1371/journal.ppat.1007112. PubMed DOI PMC
Tong S.Y.C., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015;28:603–661. doi: 10.1128/CMR.00134-14. PubMed DOI PMC
Liu G.Y. Molecular Pathogenesis of Staphylococcus aureus Infection. Pediatr. Res. 2009;65:71–77. doi: 10.1203/PDR.0b013e31819dc44d. PubMed DOI PMC
Gatadi S., Madhavi Y.V., Chopra S., Nanduri S. Promising Antibacterial Agents against Multidrug Resistant Staphylococcus aureus. Bioorg. Chem. 2019;92:103252. doi: 10.1016/j.bioorg.2019.103252. PubMed DOI
Drew R.H. Emerging Options for Treatment of Invasive, Multidrug-Resistant Staphylococcus aureus Infections. Pharmacotherapy. 2007;27:227–249. doi: 10.1592/phco.27.2.227. PubMed DOI
Shoaib M., Aqib A.I., Muzammil I., Majeed N., Bhutta Z.A., Kulyar M.F.-A., Fatima M., Zaheer C.-N.F., Muneer A., Murtaza M., et al. MRSA Compendium of Epidemiology, Transmission, Pathophysiology, Treatment, and Prevention within One Health Framework. Front. Microbiol. 2023;13:1067284. doi: 10.3389/fmicb.2022.1067284. PubMed DOI PMC
Cosio T., Coniglione F., Flaminio V., Gaziano R., Coletta D., Petruccelli R., Dika E., Bianchi L., Campione E. Pyodermitis during nivolumab treatment for non-small cell lung cancer: A case report and review of the literature. Int. J. Mol. Sci. 2023;24:4580. doi: 10.3390/ijms24054580. PubMed DOI PMC
Borges A., Saavedra M.J., Simoes M. Insights on Antimicrobial Resistance, Biofilms and the Use of Phytochemicals as New Antimicrobial Agents. Curr. Med. Chem. 2015;22:2590–2614. doi: 10.2174/0929867322666150530210522. PubMed DOI
Dhama K., Tiwari R., Chakraborty S., Saminathan M., Kumar A., Karthik K., Wani M.Y., Amarpal A., Singh S., Rahal A. Evidence Based Antibacterial Potentials of Medicinal Plants and Herbs Countering Bacterial Pathogens Especially in the Era of Emerging Drug Resistance: An Integrated Update. Int. J. Pharmacol. 2014;10:1–43. doi: 10.3923/ijp.2014.1.43. DOI
Solanki R., Jodha B., Prabina K.E., Aggarwal N., Patel S. Recent Advances in Phytochemical Based Nano-Drug Delivery Systems to Combat Breast Cancer: A Review. J. Drug Deliv. Sci. Technol. 2022;77:103832. doi: 10.1016/j.jddst.2022.103832. DOI
Egbuna C., Kumar S., Ifemeje J.C., Ezzat S.M., Kaliyaperumal S. Phytochemicals as Lead Compounds for New Drug Discovery. Elsevier; Amsterdam, The Netherlands: 2019.
Suganya T., Packiavathy I.A.S.V., Aseervatham G.S.B., Carmona A., Rashmi V., Mariappan S., Devi N.R., Ananth D.A. Tackling Multiple-Drug-Resistant Bacteria with Conventional and Complex Phytochemicals. Front. Cell. Infect. Microbiol. 2022;12:883839. doi: 10.3389/fcimb.2022.883839. PubMed DOI PMC
Elzaawely A.A., Xuan T.D., Koyama H., Tawata S. Antioxidant Activity and Contents of Essential Oil and Phenolic Compounds in Flowers and Seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chem. 2007;104:1648–1653. doi: 10.1016/j.foodchem.2007.03.016. DOI
Cheng S.-S., Wu C.-L., Chang H.-T., Kao Y.-T., Chang S.-T. Antitermitic and Antifungal Activities of Essential Oil of Calocedrus formosana Leaf and Its Composition. J. Chem. Ecol. 2004;30:1957–1967. doi: 10.1023/B:JOEC.0000045588.67710.74. PubMed DOI
Sahingil D. GC/MS-Olfactometric Characterization of the Volatile Compounds, Determination Antimicrobial and Antioxidant Activity of Essential Oil from Flowers of Calendula (Calendula officinalis L.) J. Essent. Oil Bear. Plants. 2019;22:1571–1580. doi: 10.1080/0972060X.2019.1703829. DOI
Chandra A., Chaudhary M., Qamar I., Singh N., Nain V. In Silico Identification and Validation of Natural Antiviral Compounds as Potential Inhibitors of SARS-CoV-2 Methyltransferase. J. Biomol. Struct. Dyn. 2022;40:6534–6544. doi: 10.1080/07391102.2021.1886174. PubMed DOI PMC
Saha S., Nandi R., Vishwakarma P., Prakash A., Kumar D. Discovering Potential RNA Dependent RNA Polymerase Inhibitors as Prospective Drugs against COVID-19: An In Silico Approach. Front. Pharmacol. 2021;12:634047. doi: 10.3389/fphar.2021.634047. PubMed DOI PMC
Bhowmik D., Nandi R., Jagadeesan R., Kumar N., Prakash A., Kumar D. Identification of Potential Inhibitors against SARS-CoV-2 by Targeting Proteins Responsible for Envelope Formation and Virion Assembly Using Docking Based Virtual Screening, and Pharmacokinetics Approaches. Infect. Genet. Evol. 2020;84:104451. doi: 10.1016/j.meegid.2020.104451. PubMed DOI PMC
Sinha M., Jagadeesan R., Kumar N., Saha S., Kothandan G., Kumar D. In-Silico Studies on Myo Inositol-1-Phosphate Synthase of Leishmania donovani in Search of Anti-Leishmaniasis. J. Biomol. Struct. Dyn. 2022;40:3371–3384. doi: 10.1080/07391102.2020.1847194. PubMed DOI
Abdelrheem D.A., Rahman A.A., Elsayed K.N.M., Abd El-Mageed H.R., Mohamed H.S., Ahmed S.A. Isolation, Characterization, In Vitro Anticancer Activity, Dft Calculations, Molecular Docking, Bioactivity Score, Drug-Likeness and Admet Studies of Eight Phytoconstituents from Brown Alga Sargassum platycarpum. J. Biomol. Struct. Dyn. 2021;1225:129245. doi: 10.1016/j.molstruc.2020.129245. PubMed DOI
Martin Y.C. A Bioavailability Score. J. Med. Chem. 2005;48:3164–3170. doi: 10.1021/jm0492002. PubMed DOI
Chaudhary N., Aparoy P. Deciphering the Mechanism behind the Varied Binding Activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA Binding Energy Calculations and per-Residue Energy Decomposition Studies. J. Biomol. Struct. Dyn. 2017;35:868–882. doi: 10.1080/07391102.2016.1165736. PubMed DOI
Choudhary S., Kesavan A.K., Juneja V., Thakur S. Molecular Modeling, Simulation and Docking of Rv1250 Protein from Mycobacterium Tuberculosis. Front. Bioinform. 2023;3:1125479. doi: 10.3389/fbinf.2023.1125479. PubMed DOI PMC
Arooj M., Shehadi I., Nassab C.N., Mohamed A.A. Physicochemical Stability Study of Protein–Benzoic Acid Complexes Using Molecular Dynamics Simulations. Amino Acids. 2020;52:1353–1362. doi: 10.1007/s00726-020-02897-2. PubMed DOI
Naïm M., Bhat S., Rankin K.N., Dennis S., Chowdhury S.F., Siddiqi I., Drabik P., Sulea T., Bayly C.I., Jakalian A., et al. Solvated Interaction Energy (SIE) for Scoring Protein−Ligand Binding Affinities. 1. Exploring the Parameter Space. J. Chem. Inf. Model. 2007;47:122–133. doi: 10.1021/ci600406v. PubMed DOI
Verma A., Kumar A., Debnath M. Molecular Docking and Simulation Studies to Give Insight of Surfactin Amyloid Interaction for Destabilizing Alzheimer’s Aβ42 Protofibrils. Med. Chem. Res. 2016;25:1616–1622. doi: 10.1007/s00044-016-1594-y. DOI
Koopmans T. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica. 1934;1:104–113. doi: 10.1016/S0031-8914(34)90011-2. DOI
Assaeed A., Elshamy A., El Gendy A.E.-N., Dar B., Al-Rowaily S., Abd-ElGawad A. Sesquiterpenes-Rich Essential Oil from Above Ground Parts of Pulicaria somalensis Exhibited Antioxidant Activity and Allelopathic Effect on Weeds. Agronomy. 2020;10:399. doi: 10.3390/agronomy10030399. DOI
Górski K.M., Kowalczyk T., Picot L., Rijo P., Ghorbanpour M., Sitarek P. The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications. Int. J. Mol. Sci. 2024;25:2723. doi: 10.3390/ijms25052723. PubMed DOI PMC
Radulovic N.S., Blagojevic P.D., Stojanovic-Radic Z.Z., Stojanovic N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013;20:932–952. PubMed
Hu C., Xiong N., Zhang Y., Rayner S., Chen S. Functional Characterization of Lipase in the Pathogenesis of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2012;419:617–620. doi: 10.1016/j.bbrc.2012.02.057. PubMed DOI
Jianu C., Stoin D., Cocan I., David I., Pop G., Lukinich-Gruia A.T., Mioc M., Mioc A., Șoica C., Muntean D., et al. In silico and in vitro evaluation of the antimicrobial and antioxidant potential of Mentha × smithiana R. Graham essential oil from Western Romania. Foods. 2021;10:815. doi: 10.3390/foods10040815. PubMed DOI PMC
Dönhöfer A., Franckenberg S., Wickles S., Berninghausen O., Beckmann R., Wilson D.N. Structural Basis for TetM-Mediated Tetracycline Resistance. Proc. Natl. Acad. Sci. USA. 2012;109:16900–16905. doi: 10.1073/pnas.1208037109. PubMed DOI PMC
Cipriano A., Viviano M., Feoli A., Milite C., Sarno G., Castellano S., Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J. Med. Chem. 2023;66:11632–11655. doi: 10.1021/acs.jmedchem.3c00770. PubMed DOI PMC
Pearson R.G. Chemical Hardness and Density Functional Theory. J. Chem. Sci. 2005;117:369–377. doi: 10.1007/BF02708340. DOI
Klingmüller U., Schilling M., Depner S., D’Alessandro L. Computational Systems Biology: From Molecular Mechanisms to Disease. 2nd ed. Academic Press; Amsterdam, The Netherlands: 2014. Biological Foundations of Signal Transduction, Systems Biology and Aberrations in Disease; pp. 45–64.
Haroon M., Akhtar T., Shaikh Q., Mehmood H., Khalid M., Asghar M.A., Alshehri S.M., Ojha S.C. Facile Synthesis and DFT Analysis of Novel Thiazole-Based Hydrazones: An Experimental and Theoretical Perspective. ACS Omega. 2023;8:27488–27499. doi: 10.1021/acsomega.3c03088. PubMed DOI PMC
Su Y.C., Hsu K.P., Wang E.I.C., Ho C.L. Composition, in vitro cytotoxic, and antimicrobial activities of the flower essential oil of Diospyros discolor from Taiwan. Nat. Prod. Commun. 2015;10:1934578X1501000744. doi: 10.1177/1934578X1501000744. PubMed DOI
Zouaghi N., Bensiradj N.H., Cavaleiro C., Nadjemi B., Trari M. Phytochemical study and antibacterial effects of Fraxinus angustifolia Vahl (Algeria): Experimental and computational investigations. Waste Biomass Valor. 2021;12:3605–3616. doi: 10.1007/s12649-020-01240-w. DOI
Khoury M., El Beyrouthy M., Ouaini N., Eparvier V., Stien D. Hirtellina lobelii DC. essential oil, its constituents, its combination with antimicrobial drugs and its mode of action. Fitoterapia. 2019;133:130–136. doi: 10.1016/j.fitote.2019.01.001. PubMed DOI
Bhattacharya S., Dutta A., Khanra P.K., Gupta N., Dutta R., Tzvetkov N.T., Milella L., Ponticelli M. In silico exploration of 4 (α-l-rhamnosyloxy)-benzyl isothiocyanate: A promising phytochemical-based drug discovery approach for combating multi-drug resistant Staphylococcus aureus. Comput. Biol. Med. 2024;179:108907. doi: 10.1016/j.compbiomed.2024.108907. PubMed DOI
Gupta N., Bhattacharya S., Urbanová K., Dutta A., Hazra A.K., Fernández-Cusimamani E., Leuner O. Systematic Analysis of Antimicrobial Activity, Phytochemistry, and in Silico Molecular Interaction of Selected Essential Oils and Their Formulations from Different Indian Spices against Foodborne Bacteria. Heliyon. 2023;9:e22480. doi: 10.1016/j.heliyon.2023.e22480. PubMed DOI PMC
Kandasamy T., Sen P., Ghosh S.S. Multi-Targeted Drug Repurposing Approach for Breast Cancer via Integrated Functional Network Analysis. Mol. Inform. 2022;41:2100300. doi: 10.1002/minf.202100300. PubMed DOI
Gaussian 09 Citation. [(accessed on 28 May 2024)]. Available online: https://gaussian.com/g09citation/