Synthetic polyploidization induces enhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
20233105
Internal Grant Agency
PubMed
38454146
PubMed Central
PMC10920654
DOI
10.1038/s41598-024-56378-7
PII: 10.1038/s41598-024-56378-7
Knihovny.cz E-zdroje
- MeSH
- dinitrobenzeny * MeSH
- fytonutrienty farmakologie MeSH
- monoterpeny s cyklohexanovým kruhem * MeSH
- oleje prchavé * farmakologie chemie MeSH
- oleje rostlin * MeSH
- simulace molekulového dockingu MeSH
- sulfanilamidy * MeSH
- tetraploidie MeSH
- thymol farmakologie MeSH
- Thymus (rostlina) * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dinitrobenzeny * MeSH
- fytonutrienty MeSH
- gamma-terpinene MeSH Prohlížeč
- monoterpeny s cyklohexanovým kruhem * MeSH
- oleje prchavé * MeSH
- oleje rostlin * MeSH
- oryzalin MeSH Prohlížeč
- sulfanilamidy * MeSH
- thyme oil MeSH Prohlížeč
- thymol MeSH
Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.
Zobrazit více v PubMed
Ghorab, H., Kabouche, A. & Kabouche, Z. Comparative compositions of essential oils of Thymus growing in various soils and climates of North Africa. (2014).
Horváth G, Ács K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015;30:331–341. doi: 10.1002/ffj.3252. PubMed DOI PMC
Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and thyme essential oil—New insights into selected therapeutic applications. Molecules. 2020;25:4125. doi: 10.3390/molecules25184125. PubMed DOI PMC
Tsai M-L, Lin C-C, Lin W-C, Yang C-H. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci. Biotechnol. Biochem. 2011;75:1977–1983. doi: 10.1271/bbb.110377. PubMed DOI
Van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009;48:440–446. doi: 10.1111/j.1472-765X.2008.02548.x. PubMed DOI
Senatore F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in campania (Southern Italy) J. Agric. Food Chem. 1996;44:1327–1332. doi: 10.1021/jf950508z. DOI
Borugă O, et al. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life. 2014;7:56–60. PubMed PMC
Tohidi B, Rahimmalek M, Arzani A, Sabzalian MR. Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chem. 2020;307:125521. doi: 10.1016/j.foodchem.2019.125521. PubMed DOI
Salehi B, et al. Thymus spp. Plants—Food applications and phytopharmacy properties. Trends Food Sci. Technol. 2019;85:287–306. doi: 10.1016/j.tifs.2019.01.020. DOI
Fachini-Queiroz FC, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complem. Alternat. Med. 2012;2012:e657026. doi: 10.1155/2012/657026. PubMed DOI PMC
Marchese A, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402–414. doi: 10.1016/j.foodchem.2016.04.111. PubMed DOI
Kazemi M. Chemical composition, antimicrobial, antioxidant and anti-inflammatory activity of Carum copticum L. essential oil. J. Essent. Oil Bear. Plants. 2014;17:1040–1045. doi: 10.1080/0972060X.2014.908747. DOI
Reyes-Jurado F, Cervantes-Rincón T, Bach H, López-Malo A, Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI
Antih J, Houdkova M, Urbanova K, Kokoska L. Antibacterial activity of Thymus vulgaris L. essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace sampling techniques. Molecules. 2021;26:6553. doi: 10.3390/molecules26216553. PubMed DOI PMC
Quesada J, Sendra E, Navarro C, Sayas-Barberá E. Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods. 2016;5:57. doi: 10.3390/foods5030057. PubMed DOI PMC
Orhan-Yanıkan E, Gülseren G, Ayhan K. Antimicrobial characteristics of Thymus vulgaris and Rosa damascena oils against some milk-borne bacteria. Microchem. J. 2022;183:108069. doi: 10.1016/j.microc.2022.108069. DOI
Mahmoodi M, et al. Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations. Biomed. Pharmacother. 2019;109:2100–2108. doi: 10.1016/j.biopha.2018.08.078. PubMed DOI
Jaouadi R, Boussaid M, Zaouali Y. Variation in essential oil composition within and among Tunisian Thymus algeriensis Boiss et Reut (Lamiaceae) populations: Effect of ecological factors and incidence on antiacetylcholinesterase and antioxidant activities. Biochem. Syst. Ecol. 2023;106:104543. doi: 10.1016/j.bse.2022.104543. DOI
Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys. Acta BBA - Gene Regul. Mech. 2013;1829:1236–1247. doi: 10.1016/j.bbagrm.2013.09.006. PubMed DOI
Guimarães AF, Vinhas ACA, Gomes AF, Souza LH, Krepsky PB. Essential oil of Curcuma longa L. Rhizomes chemical composition, yield variation and stability. Quím. Nova. 2020;43:909–913.
Gomes AF, et al. Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchem. J. 2018;138:494–500. doi: 10.1016/j.microc.2018.02.003. DOI
Zhang C, Wohlhueter R, Zhang H. Genetically modified foods: A critical review of their promise and problems. Food Sci. Hum. Wellness. 2016;5:116–123. doi: 10.1016/j.fshw.2016.04.002. DOI
Niazian M, Nalousi AM. Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tissue Organ. Cult. PCTOC. 2020;142:447–469. doi: 10.1007/s11240-020-01888-1. DOI
Baiton, A. Novel Strategies for Sustainable Rapid Breeding of Cannabis sativa L. (University of Guelph, 2024).
Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015;35:119–125. doi: 10.1016/j.gde.2015.11.003. PubMed DOI
Salma U, Kundu S, Mandal N. Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 2017;20:9–19. doi: 10.1007/s12892-016-0080-1. DOI
Beranová K, et al. Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of Callisia fragrans (Lindl.) woodson. Agronomy. 2022;12:2520. doi: 10.3390/agronomy12102520. DOI
Jadaun, J. S., Yadav, R., Yadav, N., Bansal, S. & Sangwan, N. S. Influence of Genetics on the Secondary Metabolites of Plants. In Natural Secondary Metabolites: From Nature, Through Science, to Industry (eds. Carocho, M., Heleno, S. A. & Barros, L.) 403–433 (Springer International Publishing, 2023).
Jmii G, Gharsallaoui S, Mars M, Haouala R. Polyploidization of Trigonella foenum-graecum L. enhances its phytotoxic activity against Cyperus rotundus L. South Afr. J. Bot. 2023;153:336–345. doi: 10.1016/j.sajb.2023.01.008. DOI
Farhadi, N. & Moghaddam, M. Application of Recent Advanced Technologies for the Improvement of Medicinal and Aromatic Plants. In Biosynthesis of Bioactive Compounds in Medicinal and Aromatic Plants: Manipulation by Conventional and Biotechnological Approaches (eds. Kumar, N. & S. Singh, R.) 235–255 (Springer Nature Switzerland, 2023).
Saleem A, et al. HPLC, FTIR and GC-MS analyses of thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules. 2022;27:8512. doi: 10.3390/molecules27238512. PubMed DOI PMC
Diniz do Nascimento, L. , et al. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules. 2020;10:988. doi: 10.3390/biom10070988. PubMed DOI PMC
Xie Z, et al. Chemical composition and anti-proliferative and anti-inflammatory effects of the leaf and whole-plant samples of diploid and tetraploid Gynostemma pentaphyllum (Thunb.) Makino. Food Chem. 2012;132:125–133. doi: 10.1016/j.foodchem.2011.10.043. PubMed DOI
Homaidan Shmeit Y, et al. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hortic. 2020;263:109095. doi: 10.1016/j.scienta.2019.109095. DOI
Bharati R, et al. Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Prod. 2023;198:116683. doi: 10.1016/j.indcrop.2023.116683. DOI
Adams, R. P. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Identif. Essent. Oil Compon. Gas Chromatogr. Mass Spectrosc. (2001).
Houdkova M, Rondevaldova J, Doskocil I, Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Houdkova M, et al. In vitro growth-inhibitory effect of Cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. South Afr. J. Bot. 2018;118:85–97. doi: 10.1016/j.sajb.2018.06.005. DOI
Stastny J, et al. Antioxidant and anti-inflammatory activity of five medicinal mushrooms of the genus pleurotus. Antioxidants. 2022;11:1569. doi: 10.3390/antiox11081569. PubMed DOI PMC
Langhansova L, et al. Myrica rubra leaves as a potential source of a dual 5-LOX/COX inhibitor. Food Agric. Immunol. 2017;28:343–353. doi: 10.1080/09540105.2016.1272554. DOI
Gupta N, et al. Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon. 2023;9:e22480. doi: 10.1016/j.heliyon.2023.e22480. PubMed DOI PMC
Mendes-da-Silva RF, et al. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: A cortical spreading depression and malondialdehyde analysis. Neuropharmacology. 2014;86:155–160. doi: 10.1016/j.neuropharm.2014.06.027. PubMed DOI
Essential oils: revised monograph and new general chapter in the Ph. Eur. European Directorate for the Quality of Medicines & HealthCare https://www.edqm.eu/en/-/essential-oils-revised-monograph-and-new-general-chapter-in-the-ph.-eur
Clinical & Laboratory Standards Institute: CLSI Guidelines. Clinical & Laboratory Standards Institute https://clsi.org/.
Aggio RB, Mayor A, Reade S, Probert CS, Ruggiero K. Identifying and quantifying metabolites by scoring peaks of GC-MS data. BMC Bioinf. 2014;15:374. doi: 10.1186/s12859-014-0374-2. PubMed DOI PMC
Tavan M, Mirjalili MH, Karimzadeh G. In vitro polyploidy induction: changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae) Plant Cell Tissue Organ Cult. PCTOC. 2015;122:573–583. doi: 10.1007/s11240-015-0789-0. DOI
Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding. Planta. 2016;243:281–296. doi: 10.1007/s00425-015-2450-x. PubMed DOI
Navrátilová B, Švécarová M, Bednář J, Ondřej V. In vitro polyploidization of Thymus vulgaris L. and its effect on composition of essential oils. Agronomy. 2021;11:596. doi: 10.3390/agronomy11030596. DOI
Hannweg K, Visser G, de Jager K, Bertling I. In vitro-induced polyploidy and its effect on horticultural characteristics, essential oil composition and bioactivity of Tetradenia riparia. South Afr. J. Bot. 2016;106:186–191. doi: 10.1016/j.sajb.2016.07.013. DOI
Trojak-Goluch A, Skomra U. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breed. Sci. 2013;63:393–399. doi: 10.1270/jsbbs.63.393. PubMed DOI PMC
Kazemi M. Phytochemical composition, antioxidant, anti-inflammatory and antimicrobial activity of Nigella sativa L. essential oil. J. Essent. Oil Bear. Plants. 2014;17:1002–1011. doi: 10.1080/0972060X.2014.914857. DOI
Nikolić M, et al. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014;52:183–190. doi: 10.1016/j.indcrop.2013.10.006. DOI
Tan F-Q, et al. Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata Blanco) Plant Sci. 2019;289:110276. doi: 10.1016/j.plantsci.2019.110276. PubMed DOI
Pansuksan K, Sangthong R, Nakamura I, Mii M, Supaibulwatana K. Tetraploid induction of Mitracarpus hirtus L. by colchicine and its characterization including antibacterial activity. Plant Cell Tiss. Organ. Cult. PCTOC. 2014;117:381–391. doi: 10.1007/s11240-014-0447-y. DOI
Mancini E, et al. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L Essential Oils. Molecules. 2015;20:12016–12028. doi: 10.3390/molecules200712016. PubMed DOI PMC
Dash KT, et al. Chemical composition of carvacrol rich leaf essential oil of Thymus vulgaris from India: Assessment of antimicrobial, antioxidant and cytotoxic potential. J. Essent. Oil Bear. Plants. 2021;24:1134–1145. doi: 10.1080/0972060X.2021.2008273. DOI
Galovičová L, et al. Thymus vulgaris essential oil and its biological activity. Plants. 2021;10:1959. doi: 10.3390/plants10091959. PubMed DOI PMC
Bhuvaneswari G, Thirugnanasampandan R, Gogulramnath M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants. 2020;26:271–279. doi: 10.1007/s12298-019-00718-9. PubMed DOI PMC
Ćavar Zeljković S, Siljak-Yakovlev S, Tan K, Maksimović M. Chemical composition and antioxidant activity of Geranium macrorrhizum in relation to ploidy level and environmental conditions. Plant Syst. Evol. 2020;306:18. doi: 10.1007/s00606-020-01649-9. DOI
Stiller C-O, Hjemdahl P. Lessons from 20 years with COX-2 inhibitors: Importance of dose–response considerations and fair play in comparative trials. J. Int. Med. 2022;292:557–574. doi: 10.1111/joim.13505. PubMed DOI
Marsik P, et al. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 2005;71:739–742. doi: 10.1055/s-2005-871288. PubMed DOI