Dual Action of Ivy and Strawberry Essential Oils: Induction of MdPR10 Gene Expression and Antimicrobial Effects in Apple Fruits

. 2025 Dec 27 ; 27 (1) : . [epub] 20251227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41516187

Grantová podpora
1/0059/24 VEGA

One significant trend in the research of plant treatment methods is that regarding the use of natural-based methods in plant protection. In this study, antimicrobial activity and changes in MdPR10 gene expression were tested for a total of five plant pathogens in a model of apple fruits, where strawberry and ivy EOs were used. The vapor-phase chemical composition of both EOs was profiled using HS-GC-MS. qRT-PCR was applied for a bacterial response analysis, together with disk diffusion assays, and minimum inhibitory concentrations were determined. To elucidate the molecular basis of the antibacterial potential of essential oils (EOs), docking analyses were performed. For Xanthomonas arboricola and Pectobacterium carotovorum, the presence of EOs resulted in the downregulation of MdPR10. Strawberry EO was more effective against weakly virulent strains of bacteria; ivy EO had greater inhibitory effects. HS-GC-MS detected 13 volatiles in strawberry EO-dominated by ethyl butyrate, ethyl 2-methylbutanoate, ethyl hexanoate, and ethyl 3-methylbutanoate-and 16 in ivy EO, characterized by monoterpenes and monoterpenoids with 1,8-cineole as the principal component. P-cymene showed the most potent binding activity against D-alanine-D-alanine ligase. Ivy EO has the potential to be effective as a natural preservative alternative mainly in postharvest technology.

Zobrazit více v PubMed

Kumar A., Singh R. Role of biopesticides in sustainable agriculture. J. Fertil. Pestic. 2015;6:2. doi: 10.4172/jbfbp.1000e129. DOI

European Council EU Strategic Agenda for 2019–2024. [(accessed on 19 July 2025)];2019 Available online: https://www.consilium.europa.eu/en/eu-strategic-agenda-2019-2024/

Hikal W.M., Baeshen R.S., Said-Al Ahl H.A. Essential oils as natural insecticides: A short review. Cogent Biol. 2017;3:1404274. doi: 10.1080/23312025.2017.1404274. DOI

Koul O., Walia S., Dhaliwal G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008;4:63–84.

Stroh J., Wan M.T., Isman M.B., Moul D.J. Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull. Environ. Contam. Toxicol. 1998;60:923–930. doi: 10.1007/s001289900716. PubMed DOI

Singh B.R., Singh V., Singh R.K., Kumar D., Singh A. Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food origin. Int. Res. J. Pharm. Pharmacol. 2011;1:228–236.

Sartorelli P., Marquioreto A.D., Amaral-Baroli A., Lima M.E., Moreno P.R. Chemical composition and antimicrobial activity of the essential oils from two species of Eucalyptus. Phytother. Res. 2007;21:231–233. doi: 10.1002/ptr.2051. PubMed DOI

Sun S., Liu Z., Lin M., Gao N., Wang X. Polyphenols in health and food processing: Antibacterial, anti-inflammatory, and antioxidant insights. Front. Nutr. 2024;11:1456730. doi: 10.3389/fnut.2024.1456730. PubMed DOI PMC

Yoon B.H., Truong V.L., Jeong W.S. Phytosterols: Extraction methods, analytical techniques, and biological activity. Molecules. 2025;30:2488. doi: 10.3390/molecules30122488. PubMed DOI PMC

Munné-Bosch S., Weiler E.W., Alegre L. α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta. 2007;225:681–691. doi: 10.1007/s00425-006-0375-0. PubMed DOI

Brown S.K., Maloney K.E. An update on apple cultivars, brands and club-marketing. N. Y. Fruit Q. 2013;21:3–10.

Sinha R.K., Verma S.S., Rastogi A. Role of pathogen-related protein 10 (PR 10) under abiotic and biotic stresses in plants. Phyton. 2020;89:167–180. doi: 10.32604/phyton.2020.09359. DOI

Garita-Cambronero J., Palacio-Bielsa A., Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: Its genomic and phenotypic characteristics in the X. arboricola species context. Mol. Plant Pathol. 2018;19:2053–2065. doi: 10.1111/mpp.12679. PubMed DOI PMC

Kałużna M., Fischer-Le Saux M., Pothier J.F., Jacques M.A., Obradović A., Tavares F., Stefani E. Xanthomonas arboricola pv. juglandis and pv. corylina: Brothers or distant relatives? Genetic clues, epidemiology, and insights for disease management. Mol. Plant Pathol. 2021;22:1481–1499. doi: 10.1111/mpp.13073. PubMed DOI PMC

EPPO EPPO Global Database. [(accessed on 18 January 2025)];2022 Available online: https://gd.eppo.int/

Toth I.K., Van Der Wolf J.M., Saddler G., LOjkowska E., Hélias V., Pirhonen M., Tsror L., Elphinstone J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011;60:385–399. doi: 10.1111/j.1365-3059.2011.02427.x. DOI

Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011;60:999–1013. doi: 10.1111/j.1365-3059.2011.02470.x. DOI

Xin X.F., Kvitko B., He S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018;16:316–328. doi: 10.1038/nrmicro.2018.17. PubMed DOI PMC

McCann H.C., Rikkerink E.H.A., Bertels F., Fiers M., Lu A., Rees-George J., Andersen M.T., Gleave A.P., Haubold B., Wohlers M.W., et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 2013;9:e1003503. doi: 10.1371/journal.ppat.1003503. Erratum in PLoS Pathog. 2013, 9. PubMed DOI PMC

Catská V., Hudská G. Use of Agrobacterium radiobacter for biological control of apple replant disease. Acta Hortic. 1993;324:67–72. doi: 10.17660/ActaHortic.1993.324.7. DOI

Ortíz-Castro R., Valencia-Cantero E., López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 2008;3:263–265. doi: 10.4161/psb.3.4.5204. PubMed DOI PMC

Chegeni R., Zarinkamar F., Rezayian M., Nazari M. Effects of growth stage on essential oils and gene expression of terpene synthases in Mentha aquatica L. Microbiol. Metabolit. Biotechnol. 2022;5:103–113. doi: 10.22104/mmb.2023.6164.1099. DOI

El-Habashy D.E., Adss I.A., Abdelrasoul M.A., Abdelgaleil S.A.M. Efficacy of six essential oils for the management of Meloidogyne incognita in eggplant and their effect on the expression of plant defense genes. Int. J. Pest. Manag. 2022;70:1453–1462. doi: 10.1080/09670874.2022.2145520. DOI

Abbey J., Jose S., Percival D., Jaakola L., Asiedu S.K. Modulation of defense genes and phenolic compounds in wild blueberry in response to Botrytis cinerea under field conditions. BMC Plant Biol. 2023;23:117. doi: 10.1186/s12870-023-04090-5. PubMed DOI PMC

Jetti R.R., Yang E., Kurnianta A., Finn C., Qian M.C. Quantification of Selected Aroma-Active Compounds in Strawberries by Headspace Solid-Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis. J. Food Sci. 2007;72:S487–S496. doi: 10.1111/j.1750-3841.2007.00445.x. PubMed DOI

Samykanno K., Pang E., Marriott P.E. Chemical characterisation of two Australian-grown strawberry varieties by using comprehensive two-dimensional gas chromatography–mass spectrometry. Food Chem. 2013;141:1997–2005. doi: 10.1016/j.foodchem.2013.05.083. PubMed DOI

Pries R., Jeschke S., Leichtle A., Bruchhage K.-L. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites. 2023;13:751. doi: 10.3390/metabo13060751. PubMed DOI PMC

Wang W., Nie J., Lv L., Gong W., Wang S., Yang M., Xu L., Li M., Du H., Huang L. A Valsa mali Effector Protein 1 Targets Apple (Malus domestica) Pathogenesis-Related 10 Protein to Promote Virulence. Front. Plant Sci. 2021;12:741342. doi: 10.3389/fpls.2021.741342. PubMed DOI PMC

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC

Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC

Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI

Amiri A., Mottaghipisheh J., Jamshidi-Kia F., Saeidi K., Vitalini S., Iriti M. Antimicrobial potency of major functional foods’ essential oils in liquid and vapor phases: A short review. Appl. Sci. 2020;10:8103. doi: 10.3390/app10228103. DOI

Maurya A., Prasad J., Das S., Dwivedy A.K. Essential oils and their application in food safety. Front. Sustain. Food Syst. 2021;5:653420. doi: 10.3389/fsufs.2021.653420. DOI

Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI

Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC

Fritsche S., Wang X., Jung C. Recent advances in our understanding of tocopherol biosynthesis in plants: An overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants. 2017;6:99. doi: 10.3390/antiox6040099. PubMed DOI PMC

Lopes N.S., Santos A.S., de Novais D.P.S., Pirovani C.P., Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: Progress in elucidating functions, regulation and modes of action. Front. Plant Sci. 2023;14:1193873. doi: 10.3389/fpls.2023.1193873. PubMed DOI PMC

Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC

Herman A., Tambor K., Herman A. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 2016;72:165–172. doi: 10.1007/s00284-015-0933-4. PubMed DOI

de Moura D.F., Rocha T.A., de Melo Barros D., da Silva M.M., dos Santos Santana M., Neta B.M., Cavalcanti I.M.F., Martins R.D., da Silva M.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch. Microbiol. 2021;203:4303–4311. doi: 10.1007/s00203-021-02377-5. PubMed DOI

Aragüez I., Osorio S., Hoffmann T., Rambla J.L., Medina-Escobar N., Granell A., Botella M.Á., Schwab W., Valpuesta V. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics. Plant Physiol. 2013;163:946–958. doi: 10.1104/pp.113.224352. PubMed DOI PMC

Marchese A., Barbieri R., Coppo E., Orhan I.E., Daglia M., Nabavi S.F., Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017;43:668–689. doi: 10.1080/1040841X.2017.1295225. PubMed DOI

Kitamura Y., Ebihara A., Agari Y., Shinkai A., Hirotsu K., Kuramitsu S. Structure of D-alanine-D-alanine ligase from Thermus thermophilus HB8: Cumulative conformational change and enzyme–ligand interactions. Biol. Crystallogr. 2009;65:1098–1106. doi: 10.1107/S0907444909029710. PubMed DOI PMC

Basu J., Chattopadhyay R., Kundu M., Chakrabarti P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 1992;174:4829–4832. doi: 10.1128/jb.174.14.4829-4832.1992. PubMed DOI PMC

Gupta N., Bhattacharya S., Urbanová K., Dutta A., Hazra A.K., Fernández-Cusimamani E., Leuner O. Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon. 2023;9:e22480. doi: 10.1016/j.heliyon.2023.e22480. PubMed DOI PMC

Pagliarani G., Paris R., Arens P., Tartarini S., Ricci G., Smulders M.J., van de Weg W.E. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes. BMC Plant Biol. 2013;13:51. doi: 10.1186/1471-2229-13-51. Erratum in BMC Plant Biol. 2016, 16, 83. PubMed DOI PMC

Garzoli S., Laghezza Masci V., Franceschi S., Tiezzi A., Giacomello P., Ovidi E. Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods. 2021;10:68. doi: 10.3390/foods10081768. PubMed DOI PMC

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucl. A Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Gupta N., Bhattacharya S., Dutta A., Tauchen J., Landa P., Urbanová K., Houdková M., Fernández-Cusimamani E., Leuner O. Synthetic polyploidization induces enhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil. Sci. Rep. 2024;14:5608. doi: 10.1038/s41598-024-56378-7. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...