Dual Action of Ivy and Strawberry Essential Oils: Induction of MdPR10 Gene Expression and Antimicrobial Effects in Apple Fruits
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0059/24
VEGA
PubMed
41516187
PubMed Central
PMC12785968
DOI
10.3390/ijms27010311
PII: ijms27010311
Knihovny.cz E-zdroje
- Klíčová slova
- Agrobacterium radiobacter, Malus domestica Borkh., MdPR10 gene expression, Pectobacterium carotovorum, Priestia megaterium, Pseudomonas syringae, Xanthomonas arboricola, secondary metabolites,
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- antiinfekční látky * farmakologie chemie MeSH
- jahodník * chemie MeSH
- Malus * mikrobiologie účinky léků genetika MeSH
- mikrobiální testy citlivosti MeSH
- oleje prchavé * farmakologie chemie MeSH
- oleje rostlin * farmakologie chemie MeSH
- ovoce * mikrobiologie účinky léků MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- regulace genové exprese u rostlin * účinky léků MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- simulace molekulového dockingu MeSH
- Xanthomonas účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antiinfekční látky * MeSH
- oleje prchavé * MeSH
- oleje rostlin * MeSH
- rostlinné proteiny * MeSH
One significant trend in the research of plant treatment methods is that regarding the use of natural-based methods in plant protection. In this study, antimicrobial activity and changes in MdPR10 gene expression were tested for a total of five plant pathogens in a model of apple fruits, where strawberry and ivy EOs were used. The vapor-phase chemical composition of both EOs was profiled using HS-GC-MS. qRT-PCR was applied for a bacterial response analysis, together with disk diffusion assays, and minimum inhibitory concentrations were determined. To elucidate the molecular basis of the antibacterial potential of essential oils (EOs), docking analyses were performed. For Xanthomonas arboricola and Pectobacterium carotovorum, the presence of EOs resulted in the downregulation of MdPR10. Strawberry EO was more effective against weakly virulent strains of bacteria; ivy EO had greater inhibitory effects. HS-GC-MS detected 13 volatiles in strawberry EO-dominated by ethyl butyrate, ethyl 2-methylbutanoate, ethyl hexanoate, and ethyl 3-methylbutanoate-and 16 in ivy EO, characterized by monoterpenes and monoterpenoids with 1,8-cineole as the principal component. P-cymene showed the most potent binding activity against D-alanine-D-alanine ligase. Ivy EO has the potential to be effective as a natural preservative alternative mainly in postharvest technology.
Andrzej Frycz Modrzewski Krakow University 30 705 Kraków Poland
Department of Chemistry and Technologies of Drug Sapienza University 00185 Rome Italy
School of Medical and Health Sciences VIZJA University 01043 Warszawa Poland
Zobrazit více v PubMed
Kumar A., Singh R. Role of biopesticides in sustainable agriculture. J. Fertil. Pestic. 2015;6:2. doi: 10.4172/jbfbp.1000e129. DOI
European Council EU Strategic Agenda for 2019–2024. [(accessed on 19 July 2025)];2019 Available online: https://www.consilium.europa.eu/en/eu-strategic-agenda-2019-2024/
Hikal W.M., Baeshen R.S., Said-Al Ahl H.A. Essential oils as natural insecticides: A short review. Cogent Biol. 2017;3:1404274. doi: 10.1080/23312025.2017.1404274. DOI
Koul O., Walia S., Dhaliwal G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008;4:63–84.
Stroh J., Wan M.T., Isman M.B., Moul D.J. Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull. Environ. Contam. Toxicol. 1998;60:923–930. doi: 10.1007/s001289900716. PubMed DOI
Singh B.R., Singh V., Singh R.K., Kumar D., Singh A. Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food origin. Int. Res. J. Pharm. Pharmacol. 2011;1:228–236.
Sartorelli P., Marquioreto A.D., Amaral-Baroli A., Lima M.E., Moreno P.R. Chemical composition and antimicrobial activity of the essential oils from two species of Eucalyptus. Phytother. Res. 2007;21:231–233. doi: 10.1002/ptr.2051. PubMed DOI
Sun S., Liu Z., Lin M., Gao N., Wang X. Polyphenols in health and food processing: Antibacterial, anti-inflammatory, and antioxidant insights. Front. Nutr. 2024;11:1456730. doi: 10.3389/fnut.2024.1456730. PubMed DOI PMC
Yoon B.H., Truong V.L., Jeong W.S. Phytosterols: Extraction methods, analytical techniques, and biological activity. Molecules. 2025;30:2488. doi: 10.3390/molecules30122488. PubMed DOI PMC
Munné-Bosch S., Weiler E.W., Alegre L. α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta. 2007;225:681–691. doi: 10.1007/s00425-006-0375-0. PubMed DOI
Brown S.K., Maloney K.E. An update on apple cultivars, brands and club-marketing. N. Y. Fruit Q. 2013;21:3–10.
Sinha R.K., Verma S.S., Rastogi A. Role of pathogen-related protein 10 (PR 10) under abiotic and biotic stresses in plants. Phyton. 2020;89:167–180. doi: 10.32604/phyton.2020.09359. DOI
Garita-Cambronero J., Palacio-Bielsa A., Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: Its genomic and phenotypic characteristics in the X. arboricola species context. Mol. Plant Pathol. 2018;19:2053–2065. doi: 10.1111/mpp.12679. PubMed DOI PMC
Kałużna M., Fischer-Le Saux M., Pothier J.F., Jacques M.A., Obradović A., Tavares F., Stefani E. Xanthomonas arboricola pv. juglandis and pv. corylina: Brothers or distant relatives? Genetic clues, epidemiology, and insights for disease management. Mol. Plant Pathol. 2021;22:1481–1499. doi: 10.1111/mpp.13073. PubMed DOI PMC
EPPO EPPO Global Database. [(accessed on 18 January 2025)];2022 Available online: https://gd.eppo.int/
Toth I.K., Van Der Wolf J.M., Saddler G., LOjkowska E., Hélias V., Pirhonen M., Tsror L., Elphinstone J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011;60:385–399. doi: 10.1111/j.1365-3059.2011.02427.x. DOI
Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011;60:999–1013. doi: 10.1111/j.1365-3059.2011.02470.x. DOI
Xin X.F., Kvitko B., He S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018;16:316–328. doi: 10.1038/nrmicro.2018.17. PubMed DOI PMC
McCann H.C., Rikkerink E.H.A., Bertels F., Fiers M., Lu A., Rees-George J., Andersen M.T., Gleave A.P., Haubold B., Wohlers M.W., et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 2013;9:e1003503. doi: 10.1371/journal.ppat.1003503. Erratum in PLoS Pathog. 2013, 9. PubMed DOI PMC
Catská V., Hudská G. Use of Agrobacterium radiobacter for biological control of apple replant disease. Acta Hortic. 1993;324:67–72. doi: 10.17660/ActaHortic.1993.324.7. DOI
Ortíz-Castro R., Valencia-Cantero E., López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 2008;3:263–265. doi: 10.4161/psb.3.4.5204. PubMed DOI PMC
Chegeni R., Zarinkamar F., Rezayian M., Nazari M. Effects of growth stage on essential oils and gene expression of terpene synthases in Mentha aquatica L. Microbiol. Metabolit. Biotechnol. 2022;5:103–113. doi: 10.22104/mmb.2023.6164.1099. DOI
El-Habashy D.E., Adss I.A., Abdelrasoul M.A., Abdelgaleil S.A.M. Efficacy of six essential oils for the management of Meloidogyne incognita in eggplant and their effect on the expression of plant defense genes. Int. J. Pest. Manag. 2022;70:1453–1462. doi: 10.1080/09670874.2022.2145520. DOI
Abbey J., Jose S., Percival D., Jaakola L., Asiedu S.K. Modulation of defense genes and phenolic compounds in wild blueberry in response to Botrytis cinerea under field conditions. BMC Plant Biol. 2023;23:117. doi: 10.1186/s12870-023-04090-5. PubMed DOI PMC
Jetti R.R., Yang E., Kurnianta A., Finn C., Qian M.C. Quantification of Selected Aroma-Active Compounds in Strawberries by Headspace Solid-Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis. J. Food Sci. 2007;72:S487–S496. doi: 10.1111/j.1750-3841.2007.00445.x. PubMed DOI
Samykanno K., Pang E., Marriott P.E. Chemical characterisation of two Australian-grown strawberry varieties by using comprehensive two-dimensional gas chromatography–mass spectrometry. Food Chem. 2013;141:1997–2005. doi: 10.1016/j.foodchem.2013.05.083. PubMed DOI
Pries R., Jeschke S., Leichtle A., Bruchhage K.-L. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites. 2023;13:751. doi: 10.3390/metabo13060751. PubMed DOI PMC
Wang W., Nie J., Lv L., Gong W., Wang S., Yang M., Xu L., Li M., Du H., Huang L. A Valsa mali Effector Protein 1 Targets Apple (Malus domestica) Pathogenesis-Related 10 Protein to Promote Virulence. Front. Plant Sci. 2021;12:741342. doi: 10.3389/fpls.2021.741342. PubMed DOI PMC
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC
Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Amiri A., Mottaghipisheh J., Jamshidi-Kia F., Saeidi K., Vitalini S., Iriti M. Antimicrobial potency of major functional foods’ essential oils in liquid and vapor phases: A short review. Appl. Sci. 2020;10:8103. doi: 10.3390/app10228103. DOI
Maurya A., Prasad J., Das S., Dwivedy A.K. Essential oils and their application in food safety. Front. Sustain. Food Syst. 2021;5:653420. doi: 10.3389/fsufs.2021.653420. DOI
Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
Fritsche S., Wang X., Jung C. Recent advances in our understanding of tocopherol biosynthesis in plants: An overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants. 2017;6:99. doi: 10.3390/antiox6040099. PubMed DOI PMC
Lopes N.S., Santos A.S., de Novais D.P.S., Pirovani C.P., Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: Progress in elucidating functions, regulation and modes of action. Front. Plant Sci. 2023;14:1193873. doi: 10.3389/fpls.2023.1193873. PubMed DOI PMC
Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC
Herman A., Tambor K., Herman A. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 2016;72:165–172. doi: 10.1007/s00284-015-0933-4. PubMed DOI
de Moura D.F., Rocha T.A., de Melo Barros D., da Silva M.M., dos Santos Santana M., Neta B.M., Cavalcanti I.M.F., Martins R.D., da Silva M.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch. Microbiol. 2021;203:4303–4311. doi: 10.1007/s00203-021-02377-5. PubMed DOI
Aragüez I., Osorio S., Hoffmann T., Rambla J.L., Medina-Escobar N., Granell A., Botella M.Á., Schwab W., Valpuesta V. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics. Plant Physiol. 2013;163:946–958. doi: 10.1104/pp.113.224352. PubMed DOI PMC
Marchese A., Barbieri R., Coppo E., Orhan I.E., Daglia M., Nabavi S.F., Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017;43:668–689. doi: 10.1080/1040841X.2017.1295225. PubMed DOI
Kitamura Y., Ebihara A., Agari Y., Shinkai A., Hirotsu K., Kuramitsu S. Structure of D-alanine-D-alanine ligase from Thermus thermophilus HB8: Cumulative conformational change and enzyme–ligand interactions. Biol. Crystallogr. 2009;65:1098–1106. doi: 10.1107/S0907444909029710. PubMed DOI PMC
Basu J., Chattopadhyay R., Kundu M., Chakrabarti P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 1992;174:4829–4832. doi: 10.1128/jb.174.14.4829-4832.1992. PubMed DOI PMC
Gupta N., Bhattacharya S., Urbanová K., Dutta A., Hazra A.K., Fernández-Cusimamani E., Leuner O. Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon. 2023;9:e22480. doi: 10.1016/j.heliyon.2023.e22480. PubMed DOI PMC
Pagliarani G., Paris R., Arens P., Tartarini S., Ricci G., Smulders M.J., van de Weg W.E. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes. BMC Plant Biol. 2013;13:51. doi: 10.1186/1471-2229-13-51. Erratum in BMC Plant Biol. 2016, 16, 83. PubMed DOI PMC
Garzoli S., Laghezza Masci V., Franceschi S., Tiezzi A., Giacomello P., Ovidi E. Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller. Foods. 2021;10:68. doi: 10.3390/foods10081768. PubMed DOI PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucl. A Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Gupta N., Bhattacharya S., Dutta A., Tauchen J., Landa P., Urbanová K., Houdková M., Fernández-Cusimamani E., Leuner O. Synthetic polyploidization induces enhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil. Sci. Rep. 2024;14:5608. doi: 10.1038/s41598-024-56378-7. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC