Repurposing major metabolites of lamiaceae family as potential inhibitors of α-synuclein aggregation to alleviate neurodegenerative diseases: an in silico approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40308772
PubMed Central
PMC12041775
DOI
10.3389/fphar.2025.1519145
PII: 1519145
Knihovny.cz E-zdroje
- Klíčová slova
- MD simulation, functional network analysis, molecular docking, neuroprotective agent, pathway enrichment analysis, phytochemical,
- Publikační typ
- časopisecké články MeSH
Neurodegenerative disorders (NDs) are typically characterized by progressive loss of neuronal function and the deposition of misfolded proteins in the brain and peripheral organs. They are molecularly classified based on the specific proteins involved, underscoring the critical role of protein-processing systems in their pathogenesis. Alpha-synuclein (α-syn) is a neural protein that is crucial in initiating and progressing various NDs by directly or indirectly regulating other ND-associated proteins. Therefore, reducing the α-syn aggregation can be an excellent option for combating ND initiation and progression. This study presents an in silico phytochemical-based approach for discovering novel neuroprotective agents from bioactive compounds of the Lamiaceae family, highlighting the potential of computational methods such as functional networking, pathway enrichment analysis, molecular docking, and simulation in therapeutic discovery. Functional network and enrichment pathway analysis established the direct or indirect involvement of α-syn in various NDs. Furthermore, molecular docking interaction and simulation studies were conducted to screen 85 major bioactive compounds of the Lamiaceae family against the α-syn aggregation. The results showed that five compounds (α-copaene, γ-eudesmol, carnosol, cedryl acetate, and spathulenol) had a high binding affinity towards α-syn with potential inhibitory activity towards its aggregation. MD simulations validated the stability of the molecular interactions determined by molecular docking. In addition, in silico pharmacokinetic analysis underscores their potential as promising drug candidates, demonstrating excellent blood-brain barrier (BBB) permeability, bioactivity, and reduced toxicity. In summary, this study identifies the most suitable compounds for targeting the α-syn aggregation and recommends these compounds as potential therapeutic agents against various NDs, pending further in vitro and in vivo validation.
Zobrazit více v PubMed
Abdelrheem D. A., Rahman A. A., Elsayed K. N. M., Abd El-Mageed H. R., Mohamed H. S., Ahmed S. A. (2021). Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum platycarpum . J. Mol. Struct. 1225, 129245. 10.1016/j.molstruc.2020.129245 DOI
Abd Rashed A., Abd Rahman A. Z., Rathi D. N. G. (2021). Essential oils as a potential neuroprotective Remedy for Age-related neurodegenerative diseases: a review. Molecules 26, 1107. 10.3390/molecules26041107 PubMed DOI PMC
Abedini A., Cao P., Plesner A., Zhang J., He M., Derk J., et al. (2018). RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity. J. Clin. Invest. 128, 682–698. 10.1172/JCI85210 PubMed DOI PMC
Acharya B., Chaijaroenkul W., Na-Bangchang K. (2021). Therapeutic potential and pharmacological activities of β-eudesmol. Chem. Biol. Drug Des. 97, 984–996. 10.1111/cbdd.13823 PubMed DOI
Alavijeh M. S., Chishty M., Qaiser M. Z., Palmer A. M. (2005). Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neurotherapeutics 2, 554–571. 10.1602/neurorx.2.4.554 PubMed DOI PMC
Asati V., Agarwal S., Mishra M., Das R., Kashaw S. K. (2020). Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: in-silico drug design studies. J. Mol. Struct. 1217, 128375. 10.1016/j.molstruc.2020.128375 DOI
Ausaf Ali S., Imtaiyaz Hassan Md., Islam A., Ahmad F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded States. Curr. Protein Pept. Sci. 15, 456–476. 10.2174/1389203715666140327114232 PubMed DOI
Bhattacharya S., Dutta A., Khanra P. K., Gupta N., Dutta R., Tzvetkov N. T., et al. (2024a). In silico exploration of 4(α-l-rhamnosyloxy)-benzyl isothiocyanate: a promising phytochemical-based drug discovery approach for combating multi-drug resistant Staphylococcus aureus . Comput. Biol. Med. 179, 108907. 10.1016/j.compbiomed.2024.108907 PubMed DOI
Bhattacharya S., Khanra P. K., Dutta A., Gupta N., Aliakbar Tehrani Z., Severová L., et al. (2024b). Computational screening of T-Muurolol for an alternative antibacterial solution against Staphylococcus aureus Infections: an in silico approach for phytochemical-based drug discovery. Int. J. Mol. Sci. 25, 9650. 10.3390/ijms25179650 PubMed DOI PMC
Bronowska A. K. (2011). “Thermodynamics of ligand-protein interactions: implications for molecular design,” in Thermodynamics - interaction studies - Solids, Liquids and Gases (London, United Kingdom: IntechOpen; ). 10.5772/19447 DOI
Brundin P., Dave K. D., Kordower J. H. (2017). Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol. 298, 225–235. 10.1016/j.expneurol.2017.10.003 PubMed DOI PMC
Cai Z., Hu W., Wu R., Zheng S., Wu K. (2022). Bioinformatic analyses of hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. Environ. health Prev. Med. 27, 38. 10.1265/ehpm.22-00023 PubMed DOI PMC
Celebi G., Kesim H., Ozer E., Kutlu O. (2020). The effect of dysfunctional ubiquitin enzymes in the pathogenesis of most common diseases. Int. J. Mol. Sci. 21, 6335. 10.3390/ijms21176335 PubMed DOI PMC
Chaudhary N., Aparoy P. (2017). Deciphering the mechanism behind the varied binding activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. J. Biomol. Struct. Dyn. 35, 868–882. 10.1080/07391102.2016.1165736 PubMed DOI
Chopade P., Chopade N., Zhao Z., Mitragotri S., Liao R., Chandran Suja V. (2023). Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng. Transl. Med. 8, e10367. 10.1002/btm2.10367 PubMed DOI PMC
Choudhary S., Kesavan A. K., Juneja V., Thakur S. (2023). Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tuberculosis. Front. Bioinform 3, 1125479. 10.3389/fbinf.2023.1125479 PubMed DOI PMC
Colicelli J. (2010). ABL tyrosine kinases: Evolution of function, regulation, and Specificity. Sci. Signal. 3, re6. 10.1126/scisignal.3139re6 PubMed DOI PMC
Courtin C., Crete D., Canestrelli C., Noble F., Marie-Claire C. (2006). Regulation of genes involved in dopamine transporter modulation by acute cocaine in rat striatum. Neurosci. Lett. 398, 235–240. 10.1016/j.neulet.2006.01.001 PubMed DOI PMC
Dabrowska M., Skoneczny M., Rode W. (2011). Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumor Biol. 32, 965–976. 10.1007/s13277-011-0198-x PubMed DOI PMC
Davidson W. S., Jonas A., Clayton D. F., George J. M. (1998). Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449. 10.1074/jbc.273.16.9443 PubMed DOI
De Luca L., Vittorio S., Peña-Díaz S., Pitasi G., Fornt-Suñé M., Bucolo F., et al. (2022). Ligand-based discovery of a small molecule as inhibitor of α-synuclein amyloid formation. Int. J. Mol. Sci. 23, 14844. 10.3390/ijms232314844 PubMed DOI PMC
Dill K. A. (2002). Dominant forces in protein folding. ACS Publ. 29, 7133–7155. 10.1021/bi00483a001 PubMed DOI
Nascimento K. F., Moreira F. M. F., Alencar Santos J., Kassuya C. A. L., Croda J. H. R., Cardoso C. A. L., et al. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 210, 351–358. 10.1016/j.jep.2017.08.030 PubMed DOI
Dua T., Neurology W. F. (2004). Atlas: Country Resources for neurological disorders 2004: results of a Collaborative study of the World health organization and the World Federation of Neurology. Geneva, Switzerland: World Health Organization.
Duan L. L., Zhu T., Mei Y., Zhang Q. G., Tang B., Zhang J. Z. H. (2013). An implementation of hydrophobic force in implicit solvent molecular dynamics simulation for packed proteins. J. Mol. Model 19, 2605–2612. 10.1007/s00894-013-1798-8 PubMed DOI
Ebadollahi A., Ziaee M., Palla F. (2020). Essential oils extracted from different species of the Lamiaceae plant family as Prospective Bioagents against several Detrimental Pests. Molecules 25, 1556. 10.3390/molecules25071556 PubMed DOI PMC
Eisenberg D., McLachlan A. D. (1986). Solvation energy in protein folding and binding. Nature 319, 199–203. 10.1038/319199a0 PubMed DOI
Eisenhaber F. (1999). Hydrophobic regions on protein surfaces. Perspect. Drug Discov. Des. 17, 27–42. 10.1023/A:1008766422140 DOI
Ellis J. M., Fell M. J. (2017). Current approaches to the treatment of Parkinson’s Disease. Bioorg. Med. Chem. Lett. 27, 4247–4255. 10.1016/j.bmcl.2017.07.075 PubMed DOI
Feigin V. L., Abajobir A. A., Abate K. H., Abd-Allah F., Abdulle A. M., Abera S. F., et al. (2017). Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897. 10.1016/S1474-4422(17)30299-5 PubMed DOI PMC
Fields C. R., Bengoa-Vergniory N., Wade-Martins R. (2019). Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front. Mol. Neurosci. 12, 299. 10.3389/fnmol.2019.00299 PubMed DOI PMC
Firoozabadi A., Zarshenas M. M., Salehi A., Jahanbin S., Mohagheghzadeh A. (2015). Effectiveness of Cuscuta planiflora ten. And Nepeta menthoides Boiss. & Buhse in major depression: a Triple-blind randomized controlled trial study. J. Evid. Based Complement. Altern. Med. 20, 94–97. 10.1177/2156587214557359 PubMed DOI
Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815. 10.1093/nar/gks1094 PubMed DOI PMC
Gandhi J., Antonelli A. C., Afridi A., Vatsia S., Joshi G., Romanov V., et al. (2019). Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci. 30, 339–358. 10.1515/revneuro-2016-0035 PubMed DOI
García A. E., Onuchic J. N. (2003). Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. U.S.A. 100, 13898–13903. 10.1073/pnas.2335541100 PubMed DOI PMC
Garrido A., Santamaría E., Fernández-Irigoyen J., Soto M., Simonet C., Fernández M., et al. (2022). Differential Phospho-Signatures in blood cells identify G2019S Carriers in Parkinson’s disease. Mov. Disord. 37, 1004–1015. 10.1002/mds.28927 PubMed DOI PMC
Ghahremanian S., Rashidi M. M., Raeisi K., Toghraie D. (2022). Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J. Mol. Liq. 354, 118901. 10.1016/j.molliq.2022.118901 PubMed DOI PMC
Ghiglieri V., Calabrese V., Calabresi P. (2018). Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front. Neurol. 9, 295. 10.3389/fneur.2018.00295 PubMed DOI PMC
Goedert M. (2001). Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492–501. 10.1038/35081564 PubMed DOI
Goedert M. (2015). NEURODEGENERATION. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555. 10.1126/science.1255555 PubMed DOI
Goldenring J. R. (2013). A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820. 10.1038/nrc3601 PubMed DOI PMC
Guo M., Suo Y., Gao Q., Du H., Zeng W., Wang Y., et al. (2015). The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF-α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro . Heliyon 1, e00020. 10.1016/j.heliyon.2015.e00020 PubMed DOI PMC
Gupta N., Bhattacharya S., Dutta A., Tauchen J., Landa P., Urbanová K., et al. (2024). Synthetic polyploidization induces enhanced phytochemical profile and biological activities in Thymus vulgaris L. essential oil. Sci. Rep. 14, 5608. 10.1038/s41598-024-56378-7 PubMed DOI PMC
Gupta N., Bhattacharya S., Urbanová K., Dutta A., Hazra A. K., Fernández-Cusimamani E., et al. (2023). Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon 9, e22480. 10.1016/j.heliyon.2023.e22480 PubMed DOI PMC
Han R., Liu Y., Li S., Li X.-J., Yang W. (2023). PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 19, 1396–1405. 10.1080/15548627.2022.2139080 PubMed DOI PMC
Hernandez-Leon A., Moreno-Pérez G. F., Martínez-Gordillo M., Aguirre-Hernández E., Valle-Dorado M. G., Díaz-Reval M. I., et al. (2021). Lamiaceae in Mexican species, a Great but Scarcely explored source of secondary metabolites with potential pharmacological effects in Pain Relief. Molecules 26, 7632. 10.3390/molecules26247632 PubMed DOI PMC
Horne R. I., Andrzejewska E. A., Alam P., Brotzakis Z. F., Srivastava A., Aubert A., et al. (2024). Discovery of potent inhibitors of α-synuclein aggregation using structure-based iterative learning. Nat. Chem. Biol. 20, 634–645. 10.1038/s41589-024-01580-x PubMed DOI PMC
Hu C., Tao L., Cao X., Chen L. (2020). The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J. Pharm. Sci. 15, 131–144. 10.1016/j.ajps.2019.09.002 PubMed DOI PMC
Huang S., Hsu L., Chang N. (2020). Functional role of WW domain‐containing proteins in tumor biology and diseases: Insight into the role in ubiquitin‐proteasome system. FASEB Bioadv 2, 234–253. 10.1096/fba.2019-00060 PubMed DOI PMC
Hui Y., Chengyong T., Cheng L., Haixia H., Yuanda Z., Weihua Y. (2018). Resveratrol attenuates the Cytotoxicity induced by amyloid-β1–42 in PC12 cells by upregulating Heme Oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem. Res. 43, 297–305. 10.1007/s11064-017-2421-7 PubMed DOI
Hwang H., Szucs M. J., Ding L. J., Allen A., Ren X., Haensgen H., et al. (2021). Neurogranin, encoded by the Schizophrenia Risk gene NRGN, Bidirectionally modulates synaptic Plasticity via calmodulin-dependent regulation of the neuronal Phosphoproteome. Biol. Psychiatry 89, 256–269. 10.1016/j.biopsych.2020.07.014 PubMed DOI PMC
Jin S. M., Youle R. J. (2013). The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9, 1750–1757. 10.4161/auto.26122 PubMed DOI PMC
Kandasamy T., Sen P., Ghosh S. S. (2022). Multi-targeted drug Repurposing approach for Breast cancer via Integrated functional network analysis. Mol. Inf. 41, 2100300. 10.1002/minf.202100300 PubMed DOI
Kaur I., Behl T., Sehgal A., Singh S., Sharma N., Aleya L., et al. (2021). Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environ. Sci. Pollut. Res. 28, 37060–37081. 10.1007/s11356-021-14619-6 PubMed DOI
Kim S. B., Dsilva C. J., Kevrekidis I. G., Debenedetti P. G. (2015). Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein. J. Chem. Phys. 142, 085101. 10.1063/1.4913322 PubMed DOI
Kolouri S., Firoozabadi A., Salehi A., Zarshenas M. M., Dastgheib S. A., Heydari M., et al. (2016). Nepeta menthoides Boiss. & Buhse freeze-dried aqueous extract versus sertraline in the treatment of major depression: a double blind randomized controlled trial. Complement. Ther. Med. 26, 164–170. 10.1016/j.ctim.2016.03.016 PubMed DOI
Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–26. 10.1016/s0169-409x(00)00129-0 PubMed DOI
López-López G., Moreno L., Cogolludo A., Galisteo M., Ibarra M., Duarte J., et al. (2004). Nitric Oxide (NO) scavenging and NO protecting effects of Quercetin and their biological significance in Vascular Smooth Muscle. Mol. Pharmacol. 65, 851–859. 10.1124/mol.65.4.851 PubMed DOI
Mahmoud A. H., Masters M. R., Yang Y., Lill M. A. (2020). Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. Commun. Chem. 3, 19–13. 10.1038/s42004-020-0261-x PubMed DOI PMC
Mank-Halati M. S., Rezaei M., Farzaei M. H., Khatony A. (2024). Comparing the effects of rosemary aromatherapy and music therapy on anxiety levels in patients undergoing general surgery: a randomized controlled clinical trial. EXPLORE 20 (5), 102976. 10.1016/j.explore.2024.01.002 PubMed DOI
Margiotta A. (2021). Role of SNAREs in neurodegenerative diseases. Cells 10, 991. 10.3390/cells10050991 PubMed DOI PMC
Martin Y. C. (2005). A bioavailability score. J. Med. Chem. 48, 3164–3170. 10.1021/jm0492002 PubMed DOI
Maruyama Y., Igarashi R., Ushiku Y., Mitsutake A. (2023). Analysis of protein folding simulation with Moving root mean square deviation. J. Chem. Inf. Model. 63, 1529–1541. 10.1021/acs.jcim.2c01444 PubMed DOI PMC
McCoy J. M., Walkenhorst D. E., McCauley K. S., Elaasar H., Everett J. R., Mix K. S. (2015). Orphan nuclear receptor NR4A2 induces transcription of the immunomodulatory peptide hormone prolactin. J. Inflamm. 12, 13. 10.1186/s12950-015-0059-2 PubMed DOI PMC
Meena V. K., Kumar V., Karalia S. (2021). Inhibitory effect of naturally occurring Ocimum sanctum extract on α-Synuclein aggregation in aqueous solution. J. Mol. Liq. 336, 116176. 10.1016/j.molliq.2021.116176 DOI
Mimaki Y., Kuroda M., Sashida Y., Falkinham J. O., 3rd, Hemby S. E., Oberlies N. H. (2021). Phytochemical and pharmacological studies on the Ajuga genus. Phytochemistry 189, 112830. 10.1016/j.phytochem.2021.112830 PubMed DOI PMC
Naïm M., Bhat S., Rankin K. N., Dennis S., Chowdhury S. F., Siddiqi I., et al. (2007). Solvated interaction energy (SIE) for scoring Protein−Ligand binding affinities. 1. Exploring the parameter Space. J. Chem. Inf. Model. 47, 122–133. 10.1021/ci600406v PubMed DOI
Naoi M., Inaba-Hasegawa K., Shamoto-Nagai M., Maruyama W. (2017). Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J. Neural Transm. 124, 1515–1527. 10.1007/s00702-017-1797-5 PubMed DOI
Nematolahi P., Mehrabani M., Karami-Mohajeri S., Dabaghzadeh F. (2018). Effects of Rosmarinus officinalis L. on memory performance, anxiety, depression, and sleep quality in university students: a randomized clinical trial. Complement. Ther. Clin. Pract. 30, 24–28. 10.1016/j.ctcp.2017.11.004 PubMed DOI
Nieto G. (2017). Biological activities of three essential oils of the Lamiaceae family. Medicines 4, 63. 10.3390/medicines4030063 PubMed DOI PMC
Ning X., Li X., Ma K., Pang H., Tian T., Hao H., et al. (2023). VDAC1 protein regulation of oxidative damage and mitochondrial dysfunction-mediated Cytotoxicity by Silica Nanoparticles in SH-SY5Y cells. Mol. Neurobiol. 60, 6542–6555. 10.1007/s12035-023-03491-9 PubMed DOI
Poeckel D., Greiner C., Verhoff M., Rau O., Tausch L., Hörnig C., et al. (2008). Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem. Pharmacol. 76, 91–97. 10.1016/j.bcp.2008.04.013 PubMed DOI
Ramos da Silva L. R., Ferreira O. O., Cruz J. N., de Jesus Pereira Franco C., Oliveira dos Anjos T., Cascaes M. M., et al. (2021). Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evidence-based Complement. Altern. Med. 2021, e6748052. 10.1155/2021/6748052 PubMed DOI PMC
Rasaiah J. C., Garde S., Hummer G. (2008). Water in nonpolar Confinement: from Nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59, 713–740. 10.1146/annurev.physchem.59.032607.093815 PubMed DOI
Ristic G., Tsou W.-L., Todi S. V. (2014). An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci. 7, 72. 10.3389/fnmol.2014.00072 PubMed DOI PMC
Rosilan N. F., Jamali M. A. M., Sufira S. A., Waiho K., Fazhan H., Ismail N., et al. (2024). Molecular docking and dynamics simulation studies uncover the host-pathogen protein-protein interactions in Penaeus vannamei and Vibrio parahaemolyticus . PLOS ONE 19, e0297759. 10.1371/journal.pone.0297759 PubMed DOI PMC
Sadeghi Z., Akaberi M., Valizadeh J. (2014). Otostegia persica (Lamiaceae): a review on its ethnopharmacology, phytochemistry, and pharmacology. Avicenna J. Phytomed 4, 79–88. Available online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103708/ (Accessed July 24, 2024). PubMed PMC
Saha M., Gupta S., Dhiman S., Asati V., Ali A., Ali A. (2023). Field and atom-based 3D-QSAR models of chromone (1-benzopyran-4-one) derivatives as MAO inhibitors. J. Biomol. Struct. Dyn. 41, 12171–12185. 10.1080/07391102.2023.2166122 PubMed DOI
Saha S., Nandi R., Vishwakarma P., Prakash A., Kumar D. (2021). Discovering potential RNA dependent RNA Polymerase inhibitors as Prospective drugs against COVID-19: an in silico approach. Front. Pharmacol. 12, 634047. 10.3389/fphar.2021.634047 PubMed DOI PMC
Sathitloetsakun S., Heiman M. (2024). “Chapter 16 - Unbiased genome-wide approaches to identify vulnerability factors in Huntington’s disease,” in Huntington’s disease. Editors Yang X. W., Thompson L. M., Heiman M. (Academic Press; ), 397–410. 10.1016/B978-0-323-95672-7.00017-0 DOI
Seidel C., Schnekenburger M., Dicato M., Diederich M. (2015). Histone deacetylase 6 in health and disease. Epigenomics 7, 103–118. 10.2217/epi.14.69 PubMed DOI
Sharifi-Rad J., Quispe C., Bouyahya A., El Menyiy N., El Omari N., Shahinozzaman M., et al. (2022). Ethnobotany, phytochemistry, biological activities, and health-promoting effects of the genus Bulbophyllum. Evidence-Based Complement . Altern. Med. 2022, 6727609. 10.1155/2022/6727609 PubMed DOI PMC
Shim K. H., Kang M. J., Youn Y. C., An S. S. A., Kim S. (2022). Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. Alzheimer’s Res. Ther. 14, 201. 10.1186/s13195-022-01150-0 PubMed DOI PMC
Shoval G., Bar-Shira O., Zalsman G., John Mann J., Chechik G. (2014). Transitions in the transcriptome of the serotonergic and dopaminergic systems in the human brain during adolescence. Eur. Neuropsychopharmacol. 24, 1123–1132. 10.1016/j.euroneuro.2014.02.009 PubMed DOI
Sinha M., Jagadeesan R., Kumar N., Saha S., Kothandan G., Kumar D. (2022). In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J. Biomol. Struct. Dyn. 40, 3371–3384. 10.1080/07391102.2020.1847194 PubMed DOI
Stefanis L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399. 10.1101/cshperspect.a009399 PubMed DOI PMC
Suthar S. K., Lee S.-Y. (2023). The role of Superoxide dismutase 1 in amyotrophic lateral sclerosis: Identification of signaling pathways, Regulators, molecular interaction networks, and biological functions through Bioinformatics. Brain Sci. 13, 151. 10.3390/brainsci13010151 PubMed DOI PMC
Upadhyay R. K. (2014). Drug delivery systems, CNS protection, and the blood brain barrier. Biomed. Res. Int. 2014, 869269. 10.1155/2014/869269 PubMed DOI PMC
Uversky V. N. (2017). Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Res 6, 525. 10.12688/f1000research.10536.1 PubMed DOI PMC
Wang L., Li J., Liu E., Kinnebrew G., Zhang X., Stover D., et al. (2019). Identification of Alternatively-Activated pathways between primary Breast cancer and Liver Metastatic cancer using Microarray data. Genes 10, 753. 10.3390/genes10100753 PubMed DOI PMC
Wang X., Hu Y., Xu R. (2024). The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen. Res. 19, 800–806. 10.4103/1673-5374.382233 PubMed DOI PMC
Williams-Gray C. H., Worth P. F. (2016). Parkinson’s disease. Medicine 44, 542–546. 10.1016/j.mpmed.2016.06.001 DOI
Wink M. (2020). Medicinal plants: a source of anti-parasitic secondary metabolites. Int. J. Parasitol. Drugs Drug Resist. 12, 15–34. 10.1016/j.ijpddr.2020.07.001 DOI
Yadav D. K. (2021). Potential therapeutic strategies of phytochemicals in neurodegenerative disorders. Curr. Top. Med. Chem. 21, 2814–2838. 10.2174/1568026621666211201150217 PubMed DOI
Yamamoto E., Akimoto T., Mitsutake A., Metzler R. (2021). Universal relation between Instantaneous Diffusivity and radius of gyration of proteins in aqueous solution. Phys. Rev. Lett. 126, 128101. 10.1103/PhysRevLett.126.128101 PubMed DOI
Yang B., Zhang D., Shi X., Shen C., Hao Y., Zhang T., et al. (2021). Construction, Identification and analysis of the interaction network of African Swine fever virus MGF360-9L with host proteins. Viruses 13, 1804. 10.3390/v13091804 PubMed DOI PMC
Zacharowski K., Zacharowski P. A., Koch A., Baban A., Tran N., Berkels R., et al. (2006). Toll-like receptor 4 plays a crucial role in the immune–adrenal response to systemic inflammatory response syndrome. Proc. Natl. Acad. Sci. U.S.A. 103, 6392–6397. 10.1073/pnas.0601527103 PubMed DOI PMC
Zahran E. M., Abdelmohsen U. R., Kolkeila A., Salem M. A., Khalil H. E., Desoukey S. Y., et al. (2021). Anti-epileptic potential, metabolic profiling and in silico studies of the aqueous fraction from Ocimum menthiifolium benth, family Lamiaceae. Nat. Prod. Res. 35, 5972–5976. 10.1080/14786419.2020.1809396 PubMed DOI
Zengin G., Mahomoodally M. F., Mollica A. (2018). Lamiaceae plants: a new source of innovative drugs for Alzheimer’s and diabetes? J. Ethnopharmacol. 213, 156–173. 10.1016/j.jep.2017.11.022 DOI
Zhang Y., Hou P., He D. C., Wang H., He H. (2021). RACK1 degrades MAVS to promote bovine ephemeral fever virus replication via upregulating E3 ubiquitin ligase STUB1. Vet. Microbiol. 257, 109096. 10.1016/j.vetmic.2021.109096 PubMed DOI
Zuccato C., Cattaneo E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311–322. 10.1038/nrneurol.2009.54 PubMed DOI