Validation of Qualitative Broth Volatilization Checkerboard Method for Testing of Essential Oils: Dual-Column GC-FID/MS Analysis and In Vitro Combinatory Antimicrobial Effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in Liquid and Vapor Phases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33670756
PubMed Central
PMC7922886
DOI
10.3390/plants10020393
PII: plants10020393
Knihovny.cz E-zdroje
- Klíčová slova
- GC/MS, antimicrobial interactions, broth volatilization chequerboard method, chemical composition, fractional inhibitory concentration, gaseous phase, oregano, thyme, volatile compound,
- Publikační typ
- časopisecké články MeSH
Combinatory action of antimicrobial agents such as essential oils (EOs) show to be an effective strategy to overcome the problem with increasing antibiotic resistance of microorganisms, including Staphylococcus aureus. The objective of this study was to evaluate in vitro antimicrobial interactions between Origanum vulgare and Thymus vulgaris EOs against various S.aureus strains in both liquid and vapor phases using the broth volatilization checkerboard method. Fractional inhibitory concentrations (FICs) were determined for both liquid and vapor phases, and the composition of EOs was analyzed by gas chromatography-mass spectrometry using dual-column/dual-detector gas chromatograph. Results of oregano and thyme EOs combination showed additive effects against all S. aureus strains in both phases. In several cases, sums of FICs were lower than 0.6, which can be considered a strong additive interaction. The lowest FICs obtained were 0.53 in the liquid phase and 0.59 in the gaseous phase. Chemical analysis showed that both EOs were composed of many compounds, including carvacrol, thymol, γ-terpinene, and p-cymene. This is the first report on oregano and thyme EOs interactions against S. aureus in the vapor phase. It also confirms the accuracy of the broth volatilization checkerboard method for the evaluation of combinatory antimicrobial effects of EOs in the vapor phase.
Zobrazit více v PubMed
Reddy P.N., Srirama K., Dirisala V.R. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis. 2017;10:1–15. doi: 10.1177/1179916117703999. PubMed DOI PMC
French G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents. 2010;36:S3–S7. doi: 10.1016/S0924-8579(10)70003-0. PubMed DOI
Kluytmans J.A.J.W., Wertheim H.F.L. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection. 2005;33:3–8. doi: 10.1007/s15010-005-4012-9. PubMed DOI
Sakr A., Bregeon F., Mege J.-L., Rolain J.-M., Blin O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018;9:2419. doi: 10.3389/fmicb.2018.02419. PubMed DOI PMC
Prince A. Staphylococcus aureus infection in the respiratory tract. In: Prince A., editor. Mucosal Immunology of Acute Bacterial Pneumonia. Springer; New York, NY, USA: 2013. pp. 239–258. DOI
MacLeod D.L., Velayudhan J., Kenney T.F., Therrien J.H., Sutherland J.L., Barker L.M., Baker W.R. Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012;56:1529–1538. doi: 10.1128/AAC.05958-11. PubMed DOI PMC
Curxpharmaceuticals. [(accessed on 13 September 2020)]; Available online: http://curxpharma.com/fti.html.
McCaughey G., McKevitt M., Elborn J.S., Tunney M.M. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J. Cyst. Fibros. 2012;11:163–172. doi: 10.1016/j.jcf.2011.11.003. PubMed DOI
Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med. Devices. 2015;8:131–139. doi: 10.2147/MDER.S48888. PubMed DOI PMC
Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 2017;4:58. doi: 10.3390/medicines4030058. PubMed DOI PMC
Hadacek F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 2002;21:273–322. doi: 10.1080/0735-260291044269. DOI
Leigh-de Rapper S., van Vuuren S.F. Odoriferous therapy: A review identifying essential oils against pathogens of the respiratory tract. Chem. Biodivers. 2020;17:e2000062. doi: 10.1002/cbdv.202000062. PubMed DOI
Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Netopilova M., Houdkova M., Rondevaldova J., Kmet V., Kokoska L. Evaluation of in vitro growth-inhibitory effect of carvacrol and thymol combination against Staphylococcus aureus in liquid and vapour phase using new broth volatilization chequerboard method. Fitoterapia. 2018;129:185–190. doi: 10.1016/j.fitote.2018.07.002. PubMed DOI
Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., van Damme P., Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020;129:906–915. doi: 10.1111/jam.14683. PubMed DOI
Modnicki D., Balcerek M. Estimation of total polyphenols contents in Ocimum basilicum L., Origanum vulgare L. and Thymus vulgaris L. commercial samples. Herba Pol. 2009;55:35–42.
Murillo-Amador B., Nieto-Garibay A., Lopez-Aguilar R., Troyo-Dieguez E., Rueda-Puente E.O., Flores-Hernandez A., Ruiz-Espinosa F.H. Physiological, morphometric characteristics and yield of Origanum vulgare L. and Thymus vulgaris L. exposed to open-field and shade-enclosure. Ind. Crop. Prod. 2013;49:659–667. doi: 10.1016/j.indcrop.2013.06.017. DOI
Teixeira B., Marques A., Ramos C., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013;93:2707–2714. doi: 10.1002/jsfa.6089. PubMed DOI
Javed H., Erum S., Tabassum S., Ameen F. An overview on medicinal importance of Thymus vulgaris. Asian J. Sci. Res. 2013;3:974–982.
Faleiro M.L., Miguel M.G., Ladeiro F., Venancio F., Tavares R., Brito J.C., Figueiredo A.C., Barroso J.G., Pedro L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol. 2003;36:35–40. doi: 10.1046/j.1472-765X.2003.01259.x. PubMed DOI
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI
Santoro G.F., das Gracas M.C., Guimaraes L.G.L., Salgado A.P., Menna-Barreto R.F., Soares M.J. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol. Res. 2007;100:783–790. doi: 10.1007/s00436-006-0326-5. PubMed DOI
Kacaniova M., Vukovic N., Hleba L., Bobkova A., Pavelkova A., Rovna K., Arpasova H. Antimicrobial and antiradicals activity of Origanum vulgare L. and Thymus vulgaris essential oils. J. Microbiol. Biotechnol. Food Sci. 2012;2:263–271.
Fournomiti M., Kimbaris A., Mantzourani I., Plessas S., Theodoridou I., Papaemmanouil V., Kapsiotis I., Panopoulou M., Stavropoulou E., Bezirtzoglou E.E., et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015;26:23289. doi: 10.3402/mehd.v26.23289. PubMed DOI PMC
De Martino L., De Feo V., Formisano C., Mignola E., Senatore F. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart growing wild in Campania (Southern Italy) Molecules. 2009;14:2735–2746. doi: 10.3390/molecules14082735. PubMed DOI PMC
Schmidt E., Wanner J., Hiiferl M., Jirovetz L., Buchbauer G., Gochev V., Girova T., Stoyanova A., Geissler M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 2012;7:1095–1098. doi: 10.1177/1934578X1200700833. PubMed DOI
Jafri H., Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. Mycol. Med. 2020;30:100911. doi: 10.1016/j.mycmed.2019.100911. PubMed DOI
Ozkalp B., Sevgi F., Ozcan M., Ozcan M.M. The antibacterial activity of essential oil of oregano (Origanum vulgare L.) J. Food Agric. Environ. 2010;8:272–274.
de Carvalho R.J., de Souza G.T., Honorio V.G., de Sousa J.P., da Conceicao M.L., Maganani M., de Souza E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol. 2015;52:59–65. doi: 10.1016/j.fm.2015.07.003. PubMed DOI
Boskovic M., Zdravkovic N., Ivanovic J., Janjic J., Djordjevic J., Starcevic M., Baltic M.Z. Antimicrobial activity of thyme (Thymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015;5:18–21. doi: 10.1016/j.profoo.2015.09.005. DOI
Al-Bayati F.A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol. 2008;116:403–406. doi: 10.1016/j.jep.2007.12.003. PubMed DOI
Honorio V.G., Bezerra J., Souza G.T., Carvalho R.J., Gomes-Neto N.J., Figueiredo R.C., Melo J.V., Souza E.L., Magnani M. Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Front Microbiol. 2015;6:1223. doi: 10.3389/fmicb.2015.01223. PubMed DOI PMC
van Vuuren S.F., Suliman S., Viljoen A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009;48:440–446. doi: 10.1111/j.1472-765X.2008.02548.x. PubMed DOI
Stojkovic D., Glamoclija J., Ciric A., Nikolic M., Ristic M., Siljegovic J., Sokovic M. Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Arch. Biol. Sci. 2013;65:639–643. doi: 10.2298/ABS1302639S. DOI
Gavaric N., Mozina S.S., Kladar N., Bozin B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. 2015;18:1013–1021. doi: 10.1080/0972060X.2014.971069. DOI
Lopez P., Sanchez C., Batlle R., Nerin C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem. 2007;55:4348–4356. doi: 10.1021/jf063295u. PubMed DOI
Nedorostova L., Kloucek P., Kokoska L., Stolcova M., Pulkrabek J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control. 2009;20:157–160. doi: 10.1016/j.foodcont.2008.03.007. DOI
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.
Nebie R.H.C., Yameogo R.T., Belanger A., Sib F.S. Composition chimique des huiles essentielles d’Ageratum conyzoides du Burkina Faso. Comptes Rendus Chim. 2004;7:1019–1022. doi: 10.1016/j.crci.2003.12.027. DOI
Lopes D., Strobl H., Kolodziejczyk P. 14-Methylpentadecano-15-lactone (Muscolide): A new macrocyclic lactone from the oil of Angelica archangelica L. Chem. Biodivers. 2004;1:1880–1887. doi: 10.1002/cbdv.200490144. PubMed DOI
Umano K., Shibamoto T. Analysis of headspace volatiles from overheated beef fat. J. Agric. Food Chem. 1987;35:14–18. doi: 10.1021/jf00073a004. DOI
Avato P., Raffo F., Aldouri N.A., Vartanian S.T. Essential oils of Varthemia iphionoides from Jordan. Flavour Fragr. J. 2004;19:559–561. doi: 10.1002/ffj.1351. DOI
Lee S.-J., Umano K., Shibamoto T., Lee K.-G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005;91:131–137. doi: 10.1016/j.foodchem.2004.05.056. DOI
Kaya A., Baser K.H.C., Demirci B., Koca F. The essential oil of Acinos alpinus (L.) Moench growing in Turkey. Flavour Fragr. J. 1999;14:55–59. doi: 10.1002/(SICI)1099-1026(199901/02)14:1<55::AID-FFJ784>3.0.CO;2-Q. DOI
Ngassoum M.B., Yonkeu S., Jirovetz L., Buchbauer G., Schmaus G., Hammerschmidt F.-J.H. Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar. Flavour Fragr. J. 1999;14:245–250. doi: 10.1002/(SICI)1099-1026(199907/08)14:4<245::AID-FFJ819>3.0.CO;2-X. DOI
Stashenko E.E., Prada N.Q., Martinez J.R. HRGC/FID/NP and HRGC/MSD study of Colombian Ylang-Ylang (Cananga odorata) oils obtained by different extraction techniques. J. Res. Chromatogr. 1996;19:353–358. doi: 10.1002/jhrc.1240190609. DOI
Bassole I.H.N., Ouattara A.S., Nebie R., Ouattara C.A.T., Kabore Z.I., Traore S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry. 2003;62:209–212. doi: 10.1016/S0031-9422(02)00477-6. PubMed DOI
Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011;1:228–235. doi: 10.1016/j.foodchem.2010.11.002. DOI
Tullio V., Nostro A., Mandras N., Dugo P., Banche G., Cannatelli M.A., Cuffini A.M., Alonzo V., Carlone N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007;102:1544–1550. doi: 10.1111/j.1365-2672.2006.03191.x. PubMed DOI
Inouye S., Abe S., Yamaguchi H., Asakura M. Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int. J. Aromather. 2003;13:33–41. doi: 10.1016/S0962-4562(03)00057-2. DOI
Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI
Kot B., Wierzchowska K., Piechota M., Czerniewicz P., Chrzanowski G. Antimicrobial activity of five essential oils from Lamiaceae against multidrug-resistant Staphylococcus aureus. Nat. Prod. Res. 2019;33:3587–3591. doi: 10.1080/14786419.2018.1486314. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000;6:503–508. doi: 10.1046/j.1469-0691.2000.00149.x. PubMed DOI
Gutierrez J., Barry-Ryan C., Bourke P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009;26:142–150. doi: 10.1016/j.fm.2008.10.008. PubMed DOI
de Souza E.L., de Barros J.C., da Conceicao M.L., Neto N.J., da Costa A.C. Combined application of Origanum vulgare l. essential oil and acetic acid for controlling the growth of Staphylococcus aureus in foods. Braz. J. Microbiol. 2009;40:387–393. doi: 10.1590/S1517-83822009000200032. PubMed DOI PMC
Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI
Reyes-Jurado F., Cervantes-Rincon T., Bach H., Lopez-Malo A., Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2009;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI
Cho Y., Kim H., Beuchat L.R., Ryu J.-H. Synergistic activities of gaseous oregano and thyme thymol essential oils against Listeria monocytogenes on surfaces of a laboratory medium and radish sprouts. Food Microbiol. 2020;86:103357. doi: 10.1016/j.fm.2019.103357. PubMed DOI
Leyva-Lopez N., Gutierrez-Grijalva E.P., Vazquez-Olivo G., Heredia J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 2017;22:989. doi: 10.3390/molecules22060989. PubMed DOI PMC
Scalas D., Mandras N., Roana J., Tardugno R., Cuffini A.M., Ghisetti V., Benvenuti S., Tullio V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complement. Altern. Med. 2018;18:143. doi: 10.1186/s12906-018-2219-4. PubMed DOI PMC
Stoilova I., Bail S., Buchbauer G., Krastanov A., Stoyanova A., Schmidt E., Jirovetz L. Chemical composition, olfactory evaluation and antioxidant effects of an essential oil of Origanum vulgare L. from Bosnia. Nat. Prod. Commun. 2008;3:1043–1046. doi: 10.1177/1934578X0800300702. DOI
Nikolic M., Glamoclija J., Ferreira I.C.F.R., Calhelha R.C., Fernandes A., Markovic T., Markovic D., Giweli A., Sokovic M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014;52:183–190. doi: 10.1016/j.indcrop.2013.10.006. DOI
Grosso C., Figueiredo A.C., Burillo J., Mainar A.M., Urieta J.S., Barroso J.G., Coelho J.A., Palavra A.M. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010;33:2211–2218. doi: 10.1002/jssc.201000192. PubMed DOI
Lukas B., Schmiderer C., Mitteregger U., Franz C., Novak J. Essential oil compounds of Origanum vulgare L. (Lamiaceae) from Corsica. Nat. Prod. Commun. 2008;3:1127–1131. doi: 10.1177/1934578X0800300717. DOI
Hudaib M., Speroni E., Di Pietra A.M., Cavrini V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharmaceut. Biomed. Anal. 2002;29:691–700. doi: 10.1016/S0731-7085(02)00119-X. PubMed DOI
Baser K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 2010.
Figueiredo A.C., Barroso J.G., Pedro L.G., Scheffer J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008;23:213–226. doi: 10.1002/ffj.1875. DOI
Anderson T., Parnell K. Comparison of Cold-Pressed Orange Oil Profiles by GC/MS Using Polar and Non-Polar GC Columns. Phenomex; Torrance, CA, USA: 2015. Report number: TN-2060. DOI
Fan S., Chang J., Zong Y., Hu G., Jia J. GC-MS Analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules. 2018;23:576. doi: 10.3390/molecules23030576. PubMed DOI PMC
Cachet T., Brevard H., Chaintreau A., Demyttenaere J., French L., Gassenmeier K., Joulain D., Koenig T., Leijs H., Liddle P., et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016;31:191–194. doi: 10.1002/ffj.3311. DOI
Tissot E., Rochat S., Debonneville C., Chaintreau A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012;27:290–296. doi: 10.1002/ffj.3098. DOI
Raquena R., Vargas M., Chiralt A. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT. 2019;101:183–190. doi: 10.1016/j.lwt.2018.10.093. DOI
Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
Ultee A., Slump R.A., Steging G., Smid E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000;63:620–624. doi: 10.4315/0362-028X-63.5.620. PubMed DOI
Delgado B., Fernandez P.S., Palop A., Periago P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 2004;21:327–334. doi: 10.1016/S0740-0020(03)00075-3. DOI
Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.-J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI
Burt S.A., Vlielander R., Haagsman H.P., Veldhuizen E.J. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 2005;68:919–926. doi: 10.4315/0362-028X-68.5.919. PubMed DOI
Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Kuttan R., Liju V.B. Safety evaluation of essential oils. In: Hashemi S.M.B., Khaneghah A.M., de Sant’Ana A.S., editors. Essential oils in Food Processing: Chemistry, Safety and Applications. 1st ed. John Wiley & Sons; West Sussex, UK: 2017. pp. 339–358. DOI
US Food and Drug Administration (FDA): CFR-Code of Federal Regulations Title 21. [(accessed on 15 October 2020)]; Available online: https://www.accessdata.fda.gov/
Vostinaru O., Heghes S.C., Filip L. Safety profile of essential oils. In: de Oliveira M.S., editor. Essential Oils-Bioactive Compounds, New Perspectives and Applications. 1st ed. IntechOpen; London, UK: 2020. pp. 1–13. DOI
Heisterberg M.V., Menne T., Johansen J.D. Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU cosmetics directive. Contact Derm. 2011;65:266–275. doi: 10.1111/j.1600-0536.2011.01962.x. PubMed DOI
ECHA European Chemicals Agency. [(accessed on 15 October 2020)]; Available online: https://echa.europa.eu/
Xie K., Tashkin D.P., Luo M.Z., Zhang J.Y. Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacol. Res. Perspect. 2019;7:e00516. doi: 10.1002/prp2.516. PubMed DOI PMC
EPA . Office of Prevention, Pesticides, and Toxic Substances, United States Environmental Protection Agency; [(accessed on 15 October 2020)]. RED Facts: Thymol. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/3143fact.pdf.
Suntres Z.E., Coccimiglio J., Alipour M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015;55:304–318. doi: 10.1080/10408398.2011.653458. PubMed DOI
EMA European Medicines Agency. [(accessed on 19 October 2020)]; Available online: https://www.ema.europa.eu/
AOAC International . Official Methods of Analysis, Official Method 925.10. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2012.
European Pharmacopoeia . Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia. 7th ed. Council of Europe; Strasbourg, France: 2013. (European Treaty Series No. 50).
Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI
NIST WebBook Chemie NIST Standard Reference Database Number 69. [(accessed on 5 October 2020)];2020 Available online: http://webbook.nist.gov/chemistry/