Validation of Qualitative Broth Volatilization Checkerboard Method for Testing of Essential Oils: Dual-Column GC-FID/MS Analysis and In Vitro Combinatory Antimicrobial Effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in Liquid and Vapor Phases

. 2021 Feb 18 ; 10 (2) : . [epub] 20210218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33670756

Combinatory action of antimicrobial agents such as essential oils (EOs) show to be an effective strategy to overcome the problem with increasing antibiotic resistance of microorganisms, including Staphylococcus aureus. The objective of this study was to evaluate in vitro antimicrobial interactions between Origanum vulgare and Thymus vulgaris EOs against various S.aureus strains in both liquid and vapor phases using the broth volatilization checkerboard method. Fractional inhibitory concentrations (FICs) were determined for both liquid and vapor phases, and the composition of EOs was analyzed by gas chromatography-mass spectrometry using dual-column/dual-detector gas chromatograph. Results of oregano and thyme EOs combination showed additive effects against all S. aureus strains in both phases. In several cases, sums of FICs were lower than 0.6, which can be considered a strong additive interaction. The lowest FICs obtained were 0.53 in the liquid phase and 0.59 in the gaseous phase. Chemical analysis showed that both EOs were composed of many compounds, including carvacrol, thymol, γ-terpinene, and p-cymene. This is the first report on oregano and thyme EOs interactions against S. aureus in the vapor phase. It also confirms the accuracy of the broth volatilization checkerboard method for the evaluation of combinatory antimicrobial effects of EOs in the vapor phase.

Zobrazit více v PubMed

Reddy P.N., Srirama K., Dirisala V.R. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis. 2017;10:1–15. doi: 10.1177/1179916117703999. PubMed DOI PMC

French G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents. 2010;36:S3–S7. doi: 10.1016/S0924-8579(10)70003-0. PubMed DOI

Kluytmans J.A.J.W., Wertheim H.F.L. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection. 2005;33:3–8. doi: 10.1007/s15010-005-4012-9. PubMed DOI

Sakr A., Bregeon F., Mege J.-L., Rolain J.-M., Blin O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018;9:2419. doi: 10.3389/fmicb.2018.02419. PubMed DOI PMC

Prince A. Staphylococcus aureus infection in the respiratory tract. In: Prince A., editor. Mucosal Immunology of Acute Bacterial Pneumonia. Springer; New York, NY, USA: 2013. pp. 239–258. DOI

MacLeod D.L., Velayudhan J., Kenney T.F., Therrien J.H., Sutherland J.L., Barker L.M., Baker W.R. Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012;56:1529–1538. doi: 10.1128/AAC.05958-11. PubMed DOI PMC

Curxpharmaceuticals. [(accessed on 13 September 2020)]; Available online: http://curxpharma.com/fti.html.

McCaughey G., McKevitt M., Elborn J.S., Tunney M.M. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J. Cyst. Fibros. 2012;11:163–172. doi: 10.1016/j.jcf.2011.11.003. PubMed DOI

Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med. Devices. 2015;8:131–139. doi: 10.2147/MDER.S48888. PubMed DOI PMC

Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 2017;4:58. doi: 10.3390/medicines4030058. PubMed DOI PMC

Hadacek F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 2002;21:273–322. doi: 10.1080/0735-260291044269. DOI

Leigh-de Rapper S., van Vuuren S.F. Odoriferous therapy: A review identifying essential oils against pathogens of the respiratory tract. Chem. Biodivers. 2020;17:e2000062. doi: 10.1002/cbdv.202000062. PubMed DOI

Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI

Netopilova M., Houdkova M., Rondevaldova J., Kmet V., Kokoska L. Evaluation of in vitro growth-inhibitory effect of carvacrol and thymol combination against Staphylococcus aureus in liquid and vapour phase using new broth volatilization chequerboard method. Fitoterapia. 2018;129:185–190. doi: 10.1016/j.fitote.2018.07.002. PubMed DOI

Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., van Damme P., Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020;129:906–915. doi: 10.1111/jam.14683. PubMed DOI

Modnicki D., Balcerek M. Estimation of total polyphenols contents in Ocimum basilicum L., Origanum vulgare L. and Thymus vulgaris L. commercial samples. Herba Pol. 2009;55:35–42.

Murillo-Amador B., Nieto-Garibay A., Lopez-Aguilar R., Troyo-Dieguez E., Rueda-Puente E.O., Flores-Hernandez A., Ruiz-Espinosa F.H. Physiological, morphometric characteristics and yield of Origanum vulgare L. and Thymus vulgaris L. exposed to open-field and shade-enclosure. Ind. Crop. Prod. 2013;49:659–667. doi: 10.1016/j.indcrop.2013.06.017. DOI

Teixeira B., Marques A., Ramos C., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013;93:2707–2714. doi: 10.1002/jsfa.6089. PubMed DOI

Javed H., Erum S., Tabassum S., Ameen F. An overview on medicinal importance of Thymus vulgaris. Asian J. Sci. Res. 2013;3:974–982.

Faleiro M.L., Miguel M.G., Ladeiro F., Venancio F., Tavares R., Brito J.C., Figueiredo A.C., Barroso J.G., Pedro L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol. 2003;36:35–40. doi: 10.1046/j.1472-765X.2003.01259.x. PubMed DOI

Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI

Santoro G.F., das Gracas M.C., Guimaraes L.G.L., Salgado A.P., Menna-Barreto R.F., Soares M.J. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol. Res. 2007;100:783–790. doi: 10.1007/s00436-006-0326-5. PubMed DOI

Kacaniova M., Vukovic N., Hleba L., Bobkova A., Pavelkova A., Rovna K., Arpasova H. Antimicrobial and antiradicals activity of Origanum vulgare L. and Thymus vulgaris essential oils. J. Microbiol. Biotechnol. Food Sci. 2012;2:263–271.

Fournomiti M., Kimbaris A., Mantzourani I., Plessas S., Theodoridou I., Papaemmanouil V., Kapsiotis I., Panopoulou M., Stavropoulou E., Bezirtzoglou E.E., et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015;26:23289. doi: 10.3402/mehd.v26.23289. PubMed DOI PMC

De Martino L., De Feo V., Formisano C., Mignola E., Senatore F. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart growing wild in Campania (Southern Italy) Molecules. 2009;14:2735–2746. doi: 10.3390/molecules14082735. PubMed DOI PMC

Schmidt E., Wanner J., Hiiferl M., Jirovetz L., Buchbauer G., Gochev V., Girova T., Stoyanova A., Geissler M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 2012;7:1095–1098. doi: 10.1177/1934578X1200700833. PubMed DOI

Jafri H., Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. Mycol. Med. 2020;30:100911. doi: 10.1016/j.mycmed.2019.100911. PubMed DOI

Ozkalp B., Sevgi F., Ozcan M., Ozcan M.M. The antibacterial activity of essential oil of oregano (Origanum vulgare L.) J. Food Agric. Environ. 2010;8:272–274.

de Carvalho R.J., de Souza G.T., Honorio V.G., de Sousa J.P., da Conceicao M.L., Maganani M., de Souza E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol. 2015;52:59–65. doi: 10.1016/j.fm.2015.07.003. PubMed DOI

Boskovic M., Zdravkovic N., Ivanovic J., Janjic J., Djordjevic J., Starcevic M., Baltic M.Z. Antimicrobial activity of thyme (Thymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015;5:18–21. doi: 10.1016/j.profoo.2015.09.005. DOI

Al-Bayati F.A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol. 2008;116:403–406. doi: 10.1016/j.jep.2007.12.003. PubMed DOI

Honorio V.G., Bezerra J., Souza G.T., Carvalho R.J., Gomes-Neto N.J., Figueiredo R.C., Melo J.V., Souza E.L., Magnani M. Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Front Microbiol. 2015;6:1223. doi: 10.3389/fmicb.2015.01223. PubMed DOI PMC

van Vuuren S.F., Suliman S., Viljoen A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009;48:440–446. doi: 10.1111/j.1472-765X.2008.02548.x. PubMed DOI

Stojkovic D., Glamoclija J., Ciric A., Nikolic M., Ristic M., Siljegovic J., Sokovic M. Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Arch. Biol. Sci. 2013;65:639–643. doi: 10.2298/ABS1302639S. DOI

Gavaric N., Mozina S.S., Kladar N., Bozin B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. 2015;18:1013–1021. doi: 10.1080/0972060X.2014.971069. DOI

Lopez P., Sanchez C., Batlle R., Nerin C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem. 2007;55:4348–4356. doi: 10.1021/jf063295u. PubMed DOI

Nedorostova L., Kloucek P., Kokoska L., Stolcova M., Pulkrabek J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control. 2009;20:157–160. doi: 10.1016/j.foodcont.2008.03.007. DOI

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.

Nebie R.H.C., Yameogo R.T., Belanger A., Sib F.S. Composition chimique des huiles essentielles d’Ageratum conyzoides du Burkina Faso. Comptes Rendus Chim. 2004;7:1019–1022. doi: 10.1016/j.crci.2003.12.027. DOI

Lopes D., Strobl H., Kolodziejczyk P. 14-Methylpentadecano-15-lactone (Muscolide): A new macrocyclic lactone from the oil of Angelica archangelica L. Chem. Biodivers. 2004;1:1880–1887. doi: 10.1002/cbdv.200490144. PubMed DOI

Umano K., Shibamoto T. Analysis of headspace volatiles from overheated beef fat. J. Agric. Food Chem. 1987;35:14–18. doi: 10.1021/jf00073a004. DOI

Avato P., Raffo F., Aldouri N.A., Vartanian S.T. Essential oils of Varthemia iphionoides from Jordan. Flavour Fragr. J. 2004;19:559–561. doi: 10.1002/ffj.1351. DOI

Lee S.-J., Umano K., Shibamoto T., Lee K.-G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005;91:131–137. doi: 10.1016/j.foodchem.2004.05.056. DOI

Kaya A., Baser K.H.C., Demirci B., Koca F. The essential oil of Acinos alpinus (L.) Moench growing in Turkey. Flavour Fragr. J. 1999;14:55–59. doi: 10.1002/(SICI)1099-1026(199901/02)14:1<55::AID-FFJ784>3.0.CO;2-Q. DOI

Ngassoum M.B., Yonkeu S., Jirovetz L., Buchbauer G., Schmaus G., Hammerschmidt F.-J.H. Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar. Flavour Fragr. J. 1999;14:245–250. doi: 10.1002/(SICI)1099-1026(199907/08)14:4<245::AID-FFJ819>3.0.CO;2-X. DOI

Stashenko E.E., Prada N.Q., Martinez J.R. HRGC/FID/NP and HRGC/MSD study of Colombian Ylang-Ylang (Cananga odorata) oils obtained by different extraction techniques. J. Res. Chromatogr. 1996;19:353–358. doi: 10.1002/jhrc.1240190609. DOI

Bassole I.H.N., Ouattara A.S., Nebie R., Ouattara C.A.T., Kabore Z.I., Traore S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry. 2003;62:209–212. doi: 10.1016/S0031-9422(02)00477-6. PubMed DOI

Tyagi A.K., Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011;1:228–235. doi: 10.1016/j.foodchem.2010.11.002. DOI

Tullio V., Nostro A., Mandras N., Dugo P., Banche G., Cannatelli M.A., Cuffini A.M., Alonzo V., Carlone N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007;102:1544–1550. doi: 10.1111/j.1365-2672.2006.03191.x. PubMed DOI

Inouye S., Abe S., Yamaguchi H., Asakura M. Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int. J. Aromather. 2003;13:33–41. doi: 10.1016/S0962-4562(03)00057-2. DOI

Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI

Kot B., Wierzchowska K., Piechota M., Czerniewicz P., Chrzanowski G. Antimicrobial activity of five essential oils from Lamiaceae against multidrug-resistant Staphylococcus aureus. Nat. Prod. Res. 2019;33:3587–3591. doi: 10.1080/14786419.2018.1486314. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000;6:503–508. doi: 10.1046/j.1469-0691.2000.00149.x. PubMed DOI

Gutierrez J., Barry-Ryan C., Bourke P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009;26:142–150. doi: 10.1016/j.fm.2008.10.008. PubMed DOI

de Souza E.L., de Barros J.C., da Conceicao M.L., Neto N.J., da Costa A.C. Combined application of Origanum vulgare l. essential oil and acetic acid for controlling the growth of Staphylococcus aureus in foods. Braz. J. Microbiol. 2009;40:387–393. doi: 10.1590/S1517-83822009000200032. PubMed DOI PMC

Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI

Reyes-Jurado F., Cervantes-Rincon T., Bach H., Lopez-Malo A., Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2009;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI

Cho Y., Kim H., Beuchat L.R., Ryu J.-H. Synergistic activities of gaseous oregano and thyme thymol essential oils against Listeria monocytogenes on surfaces of a laboratory medium and radish sprouts. Food Microbiol. 2020;86:103357. doi: 10.1016/j.fm.2019.103357. PubMed DOI

Leyva-Lopez N., Gutierrez-Grijalva E.P., Vazquez-Olivo G., Heredia J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 2017;22:989. doi: 10.3390/molecules22060989. PubMed DOI PMC

Scalas D., Mandras N., Roana J., Tardugno R., Cuffini A.M., Ghisetti V., Benvenuti S., Tullio V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complement. Altern. Med. 2018;18:143. doi: 10.1186/s12906-018-2219-4. PubMed DOI PMC

Stoilova I., Bail S., Buchbauer G., Krastanov A., Stoyanova A., Schmidt E., Jirovetz L. Chemical composition, olfactory evaluation and antioxidant effects of an essential oil of Origanum vulgare L. from Bosnia. Nat. Prod. Commun. 2008;3:1043–1046. doi: 10.1177/1934578X0800300702. DOI

Nikolic M., Glamoclija J., Ferreira I.C.F.R., Calhelha R.C., Fernandes A., Markovic T., Markovic D., Giweli A., Sokovic M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014;52:183–190. doi: 10.1016/j.indcrop.2013.10.006. DOI

Grosso C., Figueiredo A.C., Burillo J., Mainar A.M., Urieta J.S., Barroso J.G., Coelho J.A., Palavra A.M. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010;33:2211–2218. doi: 10.1002/jssc.201000192. PubMed DOI

Lukas B., Schmiderer C., Mitteregger U., Franz C., Novak J. Essential oil compounds of Origanum vulgare L. (Lamiaceae) from Corsica. Nat. Prod. Commun. 2008;3:1127–1131. doi: 10.1177/1934578X0800300717. DOI

Hudaib M., Speroni E., Di Pietra A.M., Cavrini V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharmaceut. Biomed. Anal. 2002;29:691–700. doi: 10.1016/S0731-7085(02)00119-X. PubMed DOI

Baser K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 2010.

Figueiredo A.C., Barroso J.G., Pedro L.G., Scheffer J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008;23:213–226. doi: 10.1002/ffj.1875. DOI

Anderson T., Parnell K. Comparison of Cold-Pressed Orange Oil Profiles by GC/MS Using Polar and Non-Polar GC Columns. Phenomex; Torrance, CA, USA: 2015. Report number: TN-2060. DOI

Fan S., Chang J., Zong Y., Hu G., Jia J. GC-MS Analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules. 2018;23:576. doi: 10.3390/molecules23030576. PubMed DOI PMC

Cachet T., Brevard H., Chaintreau A., Demyttenaere J., French L., Gassenmeier K., Joulain D., Koenig T., Leijs H., Liddle P., et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016;31:191–194. doi: 10.1002/ffj.3311. DOI

Tissot E., Rochat S., Debonneville C., Chaintreau A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012;27:290–296. doi: 10.1002/ffj.3098. DOI

Raquena R., Vargas M., Chiralt A. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT. 2019;101:183–190. doi: 10.1016/j.lwt.2018.10.093. DOI

Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC

Ultee A., Slump R.A., Steging G., Smid E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000;63:620–624. doi: 10.4315/0362-028X-63.5.620. PubMed DOI

Delgado B., Fernandez P.S., Palop A., Periago P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 2004;21:327–334. doi: 10.1016/S0740-0020(03)00075-3. DOI

Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.-J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI

Burt S.A., Vlielander R., Haagsman H.P., Veldhuizen E.J. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 2005;68:919–926. doi: 10.4315/0362-028X-68.5.919. PubMed DOI

Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI

Kuttan R., Liju V.B. Safety evaluation of essential oils. In: Hashemi S.M.B., Khaneghah A.M., de Sant’Ana A.S., editors. Essential oils in Food Processing: Chemistry, Safety and Applications. 1st ed. John Wiley & Sons; West Sussex, UK: 2017. pp. 339–358. DOI

US Food and Drug Administration (FDA): CFR-Code of Federal Regulations Title 21. [(accessed on 15 October 2020)]; Available online: https://www.accessdata.fda.gov/

Vostinaru O., Heghes S.C., Filip L. Safety profile of essential oils. In: de Oliveira M.S., editor. Essential Oils-Bioactive Compounds, New Perspectives and Applications. 1st ed. IntechOpen; London, UK: 2020. pp. 1–13. DOI

Heisterberg M.V., Menne T., Johansen J.D. Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU cosmetics directive. Contact Derm. 2011;65:266–275. doi: 10.1111/j.1600-0536.2011.01962.x. PubMed DOI

ECHA European Chemicals Agency. [(accessed on 15 October 2020)]; Available online: https://echa.europa.eu/

Xie K., Tashkin D.P., Luo M.Z., Zhang J.Y. Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacol. Res. Perspect. 2019;7:e00516. doi: 10.1002/prp2.516. PubMed DOI PMC

EPA . Office of Prevention, Pesticides, and Toxic Substances, United States Environmental Protection Agency; [(accessed on 15 October 2020)]. RED Facts: Thymol. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/3143fact.pdf.

Suntres Z.E., Coccimiglio J., Alipour M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015;55:304–318. doi: 10.1080/10408398.2011.653458. PubMed DOI

EMA European Medicines Agency. [(accessed on 19 October 2020)]; Available online: https://www.ema.europa.eu/

AOAC International . Official Methods of Analysis, Official Method 925.10. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2012.

European Pharmacopoeia . Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia. 7th ed. Council of Europe; Strasbourg, France: 2013. (European Treaty Series No. 50).

Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI

NIST WebBook Chemie NIST Standard Reference Database Number 69. [(accessed on 5 October 2020)];2020 Available online: http://webbook.nist.gov/chemistry/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...